2013-11-13 22:50:38 +04:00
|
|
|
#include <stdio.h>
|
2013-11-04 23:11:01 +04:00
|
|
|
#include "network.h"
|
|
|
|
#include "image.h"
|
2013-11-13 22:50:38 +04:00
|
|
|
#include "data.h"
|
2013-12-03 04:41:40 +04:00
|
|
|
#include "utils.h"
|
2013-11-04 23:11:01 +04:00
|
|
|
|
|
|
|
#include "connected_layer.h"
|
|
|
|
#include "convolutional_layer.h"
|
|
|
|
#include "maxpool_layer.h"
|
2013-12-03 04:41:40 +04:00
|
|
|
#include "softmax_layer.h"
|
2013-11-04 23:11:01 +04:00
|
|
|
|
2013-11-07 04:09:41 +04:00
|
|
|
network make_network(int n)
|
|
|
|
{
|
|
|
|
network net;
|
|
|
|
net.n = n;
|
|
|
|
net.layers = calloc(net.n, sizeof(void *));
|
|
|
|
net.types = calloc(net.n, sizeof(LAYER_TYPE));
|
|
|
|
return net;
|
|
|
|
}
|
|
|
|
|
2013-11-13 22:50:38 +04:00
|
|
|
void forward_network(network net, double *input)
|
2013-11-04 23:11:01 +04:00
|
|
|
{
|
|
|
|
int i;
|
|
|
|
for(i = 0; i < net.n; ++i){
|
|
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
2013-11-13 22:50:38 +04:00
|
|
|
forward_convolutional_layer(layer, input);
|
2013-11-04 23:11:01 +04:00
|
|
|
input = layer.output;
|
|
|
|
}
|
|
|
|
else if(net.types[i] == CONNECTED){
|
|
|
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
2013-11-13 22:50:38 +04:00
|
|
|
forward_connected_layer(layer, input);
|
|
|
|
input = layer.output;
|
2013-11-04 23:11:01 +04:00
|
|
|
}
|
2013-12-03 04:41:40 +04:00
|
|
|
else if(net.types[i] == SOFTMAX){
|
|
|
|
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
|
|
|
forward_softmax_layer(layer, input);
|
|
|
|
input = layer.output;
|
|
|
|
}
|
2013-11-04 23:11:01 +04:00
|
|
|
else if(net.types[i] == MAXPOOL){
|
|
|
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
2013-11-13 22:50:38 +04:00
|
|
|
forward_maxpool_layer(layer, input);
|
2013-11-04 23:11:01 +04:00
|
|
|
input = layer.output;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-11-06 22:37:37 +04:00
|
|
|
void update_network(network net, double step)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
for(i = 0; i < net.n; ++i){
|
|
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
2013-12-03 04:41:40 +04:00
|
|
|
update_convolutional_layer(layer, step, 0.9, .01);
|
2013-11-06 22:37:37 +04:00
|
|
|
}
|
|
|
|
else if(net.types[i] == MAXPOOL){
|
|
|
|
//maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
|
|
|
}
|
2013-12-03 04:41:40 +04:00
|
|
|
else if(net.types[i] == SOFTMAX){
|
|
|
|
//maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
|
|
|
}
|
2013-11-06 22:37:37 +04:00
|
|
|
else if(net.types[i] == CONNECTED){
|
|
|
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
2013-12-03 04:41:40 +04:00
|
|
|
update_connected_layer(layer, step, .9, 0);
|
2013-11-06 22:37:37 +04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-11-13 22:50:38 +04:00
|
|
|
double *get_network_output_layer(network net, int i)
|
|
|
|
{
|
|
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
|
|
|
return layer.output;
|
|
|
|
} else if(net.types[i] == MAXPOOL){
|
|
|
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
|
|
|
return layer.output;
|
2013-12-03 04:41:40 +04:00
|
|
|
} else if(net.types[i] == SOFTMAX){
|
|
|
|
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
|
|
|
return layer.output;
|
2013-11-13 22:50:38 +04:00
|
|
|
} else if(net.types[i] == CONNECTED){
|
|
|
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
|
|
|
return layer.output;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
double *get_network_output(network net)
|
|
|
|
{
|
|
|
|
return get_network_output_layer(net, net.n-1);
|
|
|
|
}
|
|
|
|
|
|
|
|
double *get_network_delta_layer(network net, int i)
|
|
|
|
{
|
|
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
|
|
|
return layer.delta;
|
|
|
|
} else if(net.types[i] == MAXPOOL){
|
|
|
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
|
|
|
return layer.delta;
|
2013-12-03 04:41:40 +04:00
|
|
|
} else if(net.types[i] == SOFTMAX){
|
|
|
|
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
|
|
|
return layer.delta;
|
2013-11-13 22:50:38 +04:00
|
|
|
} else if(net.types[i] == CONNECTED){
|
|
|
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
|
|
|
return layer.delta;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
double *get_network_delta(network net)
|
|
|
|
{
|
|
|
|
return get_network_delta_layer(net, net.n-1);
|
|
|
|
}
|
|
|
|
|
|
|
|
void learn_network(network net, double *input)
|
2013-11-06 22:37:37 +04:00
|
|
|
{
|
|
|
|
int i;
|
2013-11-13 22:50:38 +04:00
|
|
|
double *prev_input;
|
|
|
|
double *prev_delta;
|
2013-11-06 22:37:37 +04:00
|
|
|
for(i = net.n-1; i >= 0; --i){
|
|
|
|
if(i == 0){
|
2013-11-13 22:50:38 +04:00
|
|
|
prev_input = input;
|
|
|
|
prev_delta = 0;
|
|
|
|
}else{
|
|
|
|
prev_input = get_network_output_layer(net, i-1);
|
|
|
|
prev_delta = get_network_delta_layer(net, i-1);
|
2013-11-06 22:37:37 +04:00
|
|
|
}
|
|
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
2013-11-13 22:50:38 +04:00
|
|
|
learn_convolutional_layer(layer, prev_input);
|
|
|
|
if(i != 0) backward_convolutional_layer(layer, prev_input, prev_delta);
|
2013-11-06 22:37:37 +04:00
|
|
|
}
|
|
|
|
else if(net.types[i] == MAXPOOL){
|
2013-12-03 04:41:40 +04:00
|
|
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
|
|
|
if(i != 0) backward_maxpool_layer(layer, prev_input, prev_delta);
|
|
|
|
}
|
|
|
|
else if(net.types[i] == SOFTMAX){
|
|
|
|
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
|
|
|
if(i != 0) backward_softmax_layer(layer, prev_input, prev_delta);
|
2013-11-06 22:37:37 +04:00
|
|
|
}
|
|
|
|
else if(net.types[i] == CONNECTED){
|
|
|
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
2013-11-13 22:50:38 +04:00
|
|
|
learn_connected_layer(layer, prev_input);
|
|
|
|
if(i != 0) backward_connected_layer(layer, prev_input, prev_delta);
|
2013-11-06 22:37:37 +04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-11-13 22:50:38 +04:00
|
|
|
void train_network_batch(network net, batch b)
|
2013-11-06 22:37:37 +04:00
|
|
|
{
|
2013-11-13 22:50:38 +04:00
|
|
|
int i,j;
|
|
|
|
int k = get_network_output_size(net);
|
|
|
|
int correct = 0;
|
|
|
|
for(i = 0; i < b.n; ++i){
|
2013-12-03 04:41:40 +04:00
|
|
|
show_image(b.images[i], "Input");
|
2013-11-13 22:50:38 +04:00
|
|
|
forward_network(net, b.images[i].data);
|
|
|
|
image o = get_network_image(net);
|
2013-12-03 04:41:40 +04:00
|
|
|
if(o.h) show_image_collapsed(o, "Output");
|
2013-11-13 22:50:38 +04:00
|
|
|
double *output = get_network_output(net);
|
|
|
|
double *delta = get_network_delta(net);
|
2013-12-03 04:41:40 +04:00
|
|
|
int max_k = 0;
|
|
|
|
double max = 0;
|
2013-11-13 22:50:38 +04:00
|
|
|
for(j = 0; j < k; ++j){
|
|
|
|
delta[j] = b.truth[i][j]-output[j];
|
2013-12-03 04:41:40 +04:00
|
|
|
if(output[j] > max) {
|
|
|
|
max = output[j];
|
|
|
|
max_k = j;
|
|
|
|
}
|
2013-11-13 22:50:38 +04:00
|
|
|
}
|
2013-12-03 04:41:40 +04:00
|
|
|
if(b.truth[i][max_k]) ++correct;
|
|
|
|
printf("%f\n", (double)correct/(i+1));
|
2013-11-13 22:50:38 +04:00
|
|
|
learn_network(net, b.images[i].data);
|
2013-12-03 04:41:40 +04:00
|
|
|
update_network(net, .001);
|
|
|
|
if(i%100 == 0){
|
|
|
|
visualize_network(net);
|
|
|
|
cvWaitKey(100);
|
|
|
|
}
|
2013-11-06 22:37:37 +04:00
|
|
|
}
|
2013-12-03 04:41:40 +04:00
|
|
|
visualize_network(net);
|
|
|
|
print_network(net);
|
|
|
|
cvWaitKey(100);
|
2013-11-13 22:50:38 +04:00
|
|
|
printf("Accuracy: %f\n", (double)correct/b.n);
|
2013-11-06 22:37:37 +04:00
|
|
|
}
|
2013-11-07 04:09:41 +04:00
|
|
|
|
|
|
|
int get_network_output_size_layer(network net, int i)
|
|
|
|
{
|
|
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
2013-11-13 22:50:38 +04:00
|
|
|
image output = get_convolutional_image(layer);
|
|
|
|
return output.h*output.w*output.c;
|
2013-11-07 04:09:41 +04:00
|
|
|
}
|
|
|
|
else if(net.types[i] == MAXPOOL){
|
|
|
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
2013-11-13 22:50:38 +04:00
|
|
|
image output = get_maxpool_image(layer);
|
|
|
|
return output.h*output.w*output.c;
|
2013-11-07 04:09:41 +04:00
|
|
|
}
|
|
|
|
else if(net.types[i] == CONNECTED){
|
|
|
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
|
|
|
return layer.outputs;
|
|
|
|
}
|
2013-12-03 04:41:40 +04:00
|
|
|
else if(net.types[i] == SOFTMAX){
|
|
|
|
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
|
|
|
return layer.inputs;
|
|
|
|
}
|
2013-11-07 04:09:41 +04:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2013-11-13 22:50:38 +04:00
|
|
|
int get_network_output_size(network net)
|
2013-11-07 04:09:41 +04:00
|
|
|
{
|
|
|
|
int i = net.n-1;
|
2013-11-13 22:50:38 +04:00
|
|
|
return get_network_output_size_layer(net, i);
|
2013-11-07 04:09:41 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
image get_network_image_layer(network net, int i)
|
|
|
|
{
|
|
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
2013-11-13 22:50:38 +04:00
|
|
|
return get_convolutional_image(layer);
|
2013-11-07 04:09:41 +04:00
|
|
|
}
|
|
|
|
else if(net.types[i] == MAXPOOL){
|
|
|
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
2013-11-13 22:50:38 +04:00
|
|
|
return get_maxpool_image(layer);
|
2013-11-07 04:09:41 +04:00
|
|
|
}
|
2013-12-03 04:41:40 +04:00
|
|
|
return make_empty_image(0,0,0);
|
2013-11-07 04:09:41 +04:00
|
|
|
}
|
|
|
|
|
2013-11-04 23:11:01 +04:00
|
|
|
image get_network_image(network net)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
for(i = net.n-1; i >= 0; --i){
|
2013-11-13 22:50:38 +04:00
|
|
|
image m = get_network_image_layer(net, i);
|
|
|
|
if(m.h != 0) return m;
|
|
|
|
}
|
2013-12-03 04:41:40 +04:00
|
|
|
return make_empty_image(0,0,0);
|
2013-11-13 22:50:38 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
void visualize_network(network net)
|
|
|
|
{
|
|
|
|
int i;
|
2013-12-03 04:41:40 +04:00
|
|
|
char buff[256];
|
|
|
|
for(i = 0; i < net.n; ++i){
|
|
|
|
sprintf(buff, "Layer %d", i);
|
2013-11-04 23:11:01 +04:00
|
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
2013-12-03 04:41:40 +04:00
|
|
|
visualize_convolutional_filters(layer, buff);
|
2013-11-04 23:11:01 +04:00
|
|
|
}
|
2013-11-13 22:50:38 +04:00
|
|
|
}
|
2013-11-04 23:11:01 +04:00
|
|
|
}
|
|
|
|
|
2013-12-03 04:41:40 +04:00
|
|
|
void print_network(network net)
|
|
|
|
{
|
|
|
|
int i,j;
|
|
|
|
for(i = 0; i < net.n; ++i){
|
|
|
|
double *output;
|
|
|
|
int n = 0;
|
|
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
|
|
|
output = layer.output;
|
|
|
|
image m = get_convolutional_image(layer);
|
|
|
|
n = m.h*m.w*m.c;
|
|
|
|
}
|
|
|
|
else if(net.types[i] == MAXPOOL){
|
|
|
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
|
|
|
output = layer.output;
|
|
|
|
image m = get_maxpool_image(layer);
|
|
|
|
n = m.h*m.w*m.c;
|
|
|
|
}
|
|
|
|
else if(net.types[i] == CONNECTED){
|
|
|
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
|
|
|
output = layer.output;
|
|
|
|
n = layer.outputs;
|
|
|
|
}
|
|
|
|
else if(net.types[i] == SOFTMAX){
|
|
|
|
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
|
|
|
output = layer.output;
|
|
|
|
n = layer.inputs;
|
|
|
|
}
|
|
|
|
double mean = mean_array(output, n);
|
|
|
|
double vari = variance_array(output, n);
|
|
|
|
printf("Layer %d - Mean: %f, Variance: %f\n",i,mean, vari);
|
|
|
|
if(n > 100) n = 100;
|
|
|
|
for(j = 0; j < n; ++j) printf("%f, ", output[j]);
|
|
|
|
if(n == 100)printf(".....\n");
|
|
|
|
printf("\n");
|
|
|
|
}
|
|
|
|
}
|