2013-11-04 23:11:01 +04:00
|
|
|
#include "connected_layer.h"
|
2014-01-28 11:16:56 +04:00
|
|
|
//#include "old_conv.h"
|
2013-11-04 23:11:01 +04:00
|
|
|
#include "convolutional_layer.h"
|
|
|
|
#include "maxpool_layer.h"
|
|
|
|
#include "network.h"
|
|
|
|
#include "image.h"
|
2013-11-07 04:09:41 +04:00
|
|
|
#include "parser.h"
|
2013-11-13 22:50:38 +04:00
|
|
|
#include "data.h"
|
|
|
|
#include "matrix.h"
|
2013-12-03 04:41:40 +04:00
|
|
|
#include "utils.h"
|
2014-01-25 02:49:02 +04:00
|
|
|
#include "mini_blas.h"
|
2013-11-04 23:11:01 +04:00
|
|
|
|
|
|
|
#include <time.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
|
2014-01-29 04:28:42 +04:00
|
|
|
#define _GNU_SOURCE
|
|
|
|
#include <fenv.h>
|
|
|
|
|
2013-11-04 23:11:01 +04:00
|
|
|
void test_convolve()
|
|
|
|
{
|
2014-02-14 22:26:31 +04:00
|
|
|
image dog = load_image("dog.jpg",300,400);
|
2013-11-04 23:11:01 +04:00
|
|
|
printf("dog channels %d\n", dog.c);
|
|
|
|
image kernel = make_random_image(3,3,dog.c);
|
|
|
|
image edge = make_image(dog.h, dog.w, 1);
|
|
|
|
int i;
|
|
|
|
clock_t start = clock(), end;
|
|
|
|
for(i = 0; i < 1000; ++i){
|
2013-12-03 04:41:40 +04:00
|
|
|
convolve(dog, kernel, 1, 0, edge, 1);
|
2013-11-04 23:11:01 +04:00
|
|
|
}
|
|
|
|
end = clock();
|
2014-01-29 04:28:42 +04:00
|
|
|
printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
|
2013-11-04 23:11:01 +04:00
|
|
|
show_image_layers(edge, "Test Convolve");
|
|
|
|
}
|
|
|
|
|
2014-01-25 02:49:02 +04:00
|
|
|
void test_convolve_matrix()
|
|
|
|
{
|
2014-02-14 22:26:31 +04:00
|
|
|
image dog = load_image("dog.jpg",300,400);
|
2014-01-25 02:49:02 +04:00
|
|
|
printf("dog channels %d\n", dog.c);
|
|
|
|
|
|
|
|
int size = 11;
|
2014-01-28 11:16:56 +04:00
|
|
|
int stride = 4;
|
2014-01-25 02:49:02 +04:00
|
|
|
int n = 40;
|
2014-01-29 04:28:42 +04:00
|
|
|
float *filters = make_random_image(size, size, dog.c*n).data;
|
2014-01-25 02:49:02 +04:00
|
|
|
|
|
|
|
int mw = ((dog.h-size)/stride+1)*((dog.w-size)/stride+1);
|
|
|
|
int mh = (size*size*dog.c);
|
2014-01-29 04:28:42 +04:00
|
|
|
float *matrix = calloc(mh*mw, sizeof(float));
|
2014-01-25 02:49:02 +04:00
|
|
|
|
|
|
|
image edge = make_image((dog.h-size)/stride+1, (dog.w-size)/stride+1, n);
|
|
|
|
|
|
|
|
|
|
|
|
int i;
|
|
|
|
clock_t start = clock(), end;
|
|
|
|
for(i = 0; i < 1000; ++i){
|
|
|
|
im2col_cpu(dog.data, dog.c, dog.h, dog.w, size, stride, matrix);
|
|
|
|
gemm(0,0,n,mw,mh,1,filters,mh,matrix,mw,1,edge.data,mw);
|
|
|
|
}
|
|
|
|
end = clock();
|
2014-01-29 04:28:42 +04:00
|
|
|
printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
|
2014-01-25 02:49:02 +04:00
|
|
|
show_image_layers(edge, "Test Convolve");
|
|
|
|
cvWaitKey(0);
|
|
|
|
}
|
|
|
|
|
2013-11-04 23:11:01 +04:00
|
|
|
void test_color()
|
|
|
|
{
|
2014-02-14 22:26:31 +04:00
|
|
|
image dog = load_image("test_color.png", 300, 400);
|
2013-11-04 23:11:01 +04:00
|
|
|
show_image_layers(dog, "Test Color");
|
|
|
|
}
|
|
|
|
|
2013-12-03 04:41:40 +04:00
|
|
|
void verify_convolutional_layer()
|
|
|
|
{
|
|
|
|
srand(0);
|
|
|
|
int i;
|
|
|
|
int n = 1;
|
|
|
|
int stride = 1;
|
|
|
|
int size = 3;
|
2014-01-29 04:28:42 +04:00
|
|
|
float eps = .00000001;
|
2013-12-03 04:41:40 +04:00
|
|
|
image test = make_random_image(5,5, 1);
|
|
|
|
convolutional_layer layer = *make_convolutional_layer(test.h,test.w,test.c, n, size, stride, RELU);
|
|
|
|
image out = get_convolutional_image(layer);
|
2014-01-29 04:28:42 +04:00
|
|
|
float **jacobian = calloc(test.h*test.w*test.c, sizeof(float));
|
2013-12-03 04:41:40 +04:00
|
|
|
|
|
|
|
forward_convolutional_layer(layer, test.data);
|
|
|
|
image base = copy_image(out);
|
|
|
|
|
|
|
|
for(i = 0; i < test.h*test.w*test.c; ++i){
|
|
|
|
test.data[i] += eps;
|
|
|
|
forward_convolutional_layer(layer, test.data);
|
|
|
|
image partial = copy_image(out);
|
|
|
|
subtract_image(partial, base);
|
|
|
|
scale_image(partial, 1/eps);
|
|
|
|
jacobian[i] = partial.data;
|
|
|
|
test.data[i] -= eps;
|
|
|
|
}
|
2014-01-29 04:28:42 +04:00
|
|
|
float **jacobian2 = calloc(out.h*out.w*out.c, sizeof(float));
|
2013-12-03 04:41:40 +04:00
|
|
|
image in_delta = make_image(test.h, test.w, test.c);
|
|
|
|
image out_delta = get_convolutional_delta(layer);
|
|
|
|
for(i = 0; i < out.h*out.w*out.c; ++i){
|
|
|
|
out_delta.data[i] = 1;
|
2014-01-29 04:28:42 +04:00
|
|
|
backward_convolutional_layer(layer, in_delta.data);
|
2013-12-03 04:41:40 +04:00
|
|
|
image partial = copy_image(in_delta);
|
|
|
|
jacobian2[i] = partial.data;
|
|
|
|
out_delta.data[i] = 0;
|
|
|
|
}
|
|
|
|
int j;
|
2014-01-29 04:28:42 +04:00
|
|
|
float *j1 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float));
|
|
|
|
float *j2 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float));
|
2013-12-03 04:41:40 +04:00
|
|
|
for(i = 0; i < test.h*test.w*test.c; ++i){
|
|
|
|
for(j =0 ; j < out.h*out.w*out.c; ++j){
|
|
|
|
j1[i*out.h*out.w*out.c + j] = jacobian[i][j];
|
|
|
|
j2[i*out.h*out.w*out.c + j] = jacobian2[j][i];
|
|
|
|
printf("%f %f\n", jacobian[i][j], jacobian2[j][i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2014-01-29 04:28:42 +04:00
|
|
|
image mj1 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j1);
|
|
|
|
image mj2 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j2);
|
2013-12-03 04:41:40 +04:00
|
|
|
printf("%f %f\n", avg_image_layer(mj1,0), avg_image_layer(mj2,0));
|
|
|
|
show_image(mj1, "forward jacobian");
|
|
|
|
show_image(mj2, "backward jacobian");
|
|
|
|
}
|
|
|
|
|
2013-11-04 23:11:01 +04:00
|
|
|
void test_load()
|
|
|
|
{
|
2014-02-14 22:26:31 +04:00
|
|
|
image dog = load_image("dog.jpg", 300, 400);
|
2013-11-04 23:11:01 +04:00
|
|
|
show_image(dog, "Test Load");
|
|
|
|
show_image_layers(dog, "Test Load");
|
|
|
|
}
|
|
|
|
void test_upsample()
|
|
|
|
{
|
2014-02-14 22:26:31 +04:00
|
|
|
image dog = load_image("dog.jpg", 300, 400);
|
2013-11-04 23:11:01 +04:00
|
|
|
int n = 3;
|
|
|
|
image up = make_image(n*dog.h, n*dog.w, dog.c);
|
|
|
|
upsample_image(dog, n, up);
|
|
|
|
show_image(up, "Test Upsample");
|
|
|
|
show_image_layers(up, "Test Upsample");
|
|
|
|
}
|
|
|
|
|
|
|
|
void test_rotate()
|
|
|
|
{
|
|
|
|
int i;
|
2014-02-14 22:26:31 +04:00
|
|
|
image dog = load_image("dog.jpg",300,400);
|
2013-11-04 23:11:01 +04:00
|
|
|
clock_t start = clock(), end;
|
|
|
|
for(i = 0; i < 1001; ++i){
|
|
|
|
rotate_image(dog);
|
|
|
|
}
|
|
|
|
end = clock();
|
2014-01-29 04:28:42 +04:00
|
|
|
printf("Rotations: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
|
2013-11-04 23:11:01 +04:00
|
|
|
show_image(dog, "Test Rotate");
|
|
|
|
|
|
|
|
image random = make_random_image(3,3,3);
|
|
|
|
show_image(random, "Test Rotate Random");
|
|
|
|
rotate_image(random);
|
|
|
|
show_image(random, "Test Rotate Random");
|
|
|
|
rotate_image(random);
|
|
|
|
show_image(random, "Test Rotate Random");
|
|
|
|
}
|
|
|
|
|
2013-11-13 22:50:38 +04:00
|
|
|
void test_parser()
|
2013-11-06 22:37:37 +04:00
|
|
|
{
|
2013-11-13 22:50:38 +04:00
|
|
|
network net = parse_network_cfg("test_parser.cfg");
|
2014-01-29 04:28:42 +04:00
|
|
|
float input[1];
|
2013-11-06 22:37:37 +04:00
|
|
|
int count = 0;
|
|
|
|
|
2014-01-29 04:28:42 +04:00
|
|
|
float avgerr = 0;
|
2013-12-06 01:17:16 +04:00
|
|
|
while(++count < 100000000){
|
2014-01-29 04:28:42 +04:00
|
|
|
float v = ((float)rand()/RAND_MAX);
|
|
|
|
float truth = v*v;
|
2013-11-13 22:50:38 +04:00
|
|
|
input[0] = v;
|
|
|
|
forward_network(net, input);
|
2014-01-29 04:28:42 +04:00
|
|
|
float *out = get_network_output(net);
|
|
|
|
float *delta = get_network_delta(net);
|
|
|
|
float err = pow((out[0]-truth),2.);
|
2013-11-06 22:37:37 +04:00
|
|
|
avgerr = .99 * avgerr + .01 * err;
|
2013-12-06 01:17:16 +04:00
|
|
|
if(count % 1000000 == 0) printf("%f %f :%f AVG %f \n", truth, out[0], err, avgerr);
|
2013-11-13 22:50:38 +04:00
|
|
|
delta[0] = truth - out[0];
|
2013-12-07 01:26:09 +04:00
|
|
|
backward_network(net, input, &truth);
|
|
|
|
update_network(net, .001,0,0);
|
2013-11-06 22:37:37 +04:00
|
|
|
}
|
2013-11-13 22:50:38 +04:00
|
|
|
}
|
2013-11-06 22:37:37 +04:00
|
|
|
|
2013-11-13 22:50:38 +04:00
|
|
|
void test_data()
|
|
|
|
{
|
2013-12-03 04:41:40 +04:00
|
|
|
char *labels[] = {"cat","dog"};
|
2014-02-14 22:26:31 +04:00
|
|
|
data train = load_data_image_pathfile_random("train_paths.txt", 101,labels, 2, 300, 400);
|
2013-12-07 01:26:09 +04:00
|
|
|
free_data(train);
|
2013-11-06 22:37:37 +04:00
|
|
|
}
|
|
|
|
|
2013-12-03 04:41:40 +04:00
|
|
|
void test_full()
|
2013-11-07 04:09:41 +04:00
|
|
|
{
|
2013-12-03 04:41:40 +04:00
|
|
|
network net = parse_network_cfg("full.cfg");
|
2014-02-14 22:26:31 +04:00
|
|
|
srand(2222222);
|
|
|
|
int i = 800;
|
2013-12-03 04:41:40 +04:00
|
|
|
char *labels[] = {"cat","dog"};
|
2014-01-29 04:28:42 +04:00
|
|
|
float lr = .00001;
|
|
|
|
float momentum = .9;
|
|
|
|
float decay = 0.01;
|
2013-12-03 04:41:40 +04:00
|
|
|
while(i++ < 1000 || 1){
|
2014-02-14 22:26:31 +04:00
|
|
|
visualize_network(net);
|
|
|
|
cvWaitKey(100);
|
|
|
|
data train = load_data_image_pathfile_random("train_paths.txt", 1000, labels, 2, 256, 256);
|
|
|
|
image im = float_to_image(256, 256, 3,train.X.vals[0]);
|
|
|
|
show_image(im, "input");
|
|
|
|
cvWaitKey(100);
|
|
|
|
//scale_data_rows(train, 1./255.);
|
|
|
|
normalize_data_rows(train);
|
|
|
|
clock_t start = clock(), end;
|
|
|
|
float loss = train_network_sgd(net, train, 100, lr, momentum, decay);
|
|
|
|
end = clock();
|
|
|
|
printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay);
|
2013-12-07 01:26:09 +04:00
|
|
|
free_data(train);
|
2014-02-14 22:26:31 +04:00
|
|
|
if(i%100==0){
|
|
|
|
char buff[256];
|
|
|
|
sprintf(buff, "backup_%d.cfg", i);
|
|
|
|
//save_network(net, buff);
|
|
|
|
}
|
|
|
|
//lr *= .99;
|
2013-12-03 04:41:40 +04:00
|
|
|
}
|
2013-11-13 22:50:38 +04:00
|
|
|
}
|
|
|
|
|
2013-12-03 04:41:40 +04:00
|
|
|
void test_nist()
|
|
|
|
{
|
2013-12-07 01:26:09 +04:00
|
|
|
srand(444444);
|
2013-12-10 22:30:42 +04:00
|
|
|
srand(888888);
|
2014-01-29 04:28:42 +04:00
|
|
|
network net = parse_network_cfg("nist.cfg");
|
2013-12-07 01:26:09 +04:00
|
|
|
data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
|
|
|
|
data test = load_categorical_data_csv("mnist/mnist_test.csv",0,10);
|
|
|
|
normalize_data_rows(train);
|
|
|
|
normalize_data_rows(test);
|
2013-12-10 22:30:42 +04:00
|
|
|
//randomize_data(train);
|
2013-12-03 04:41:40 +04:00
|
|
|
int count = 0;
|
2014-01-29 04:28:42 +04:00
|
|
|
float lr = .0005;
|
|
|
|
float momentum = .9;
|
2014-02-14 22:26:31 +04:00
|
|
|
float decay = 0.001;
|
2014-01-23 23:24:37 +04:00
|
|
|
clock_t start = clock(), end;
|
2014-01-28 11:16:56 +04:00
|
|
|
while(++count <= 100){
|
2014-01-29 04:28:42 +04:00
|
|
|
//visualize_network(net);
|
|
|
|
float loss = train_network_sgd(net, train, 1000, lr, momentum, decay);
|
2014-01-28 11:16:56 +04:00
|
|
|
printf("%5d Training Loss: %lf, Params: %f %f %f, ",count*100, loss, lr, momentum, decay);
|
2014-01-23 23:24:37 +04:00
|
|
|
end = clock();
|
2014-01-29 04:28:42 +04:00
|
|
|
printf("Time: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
|
2014-01-23 23:24:37 +04:00
|
|
|
start=end;
|
2014-02-14 22:26:31 +04:00
|
|
|
//cvWaitKey(100);
|
2013-12-10 22:30:42 +04:00
|
|
|
//lr /= 2;
|
2014-01-28 11:16:56 +04:00
|
|
|
if(count%5 == 0){
|
2014-01-29 04:28:42 +04:00
|
|
|
float train_acc = network_accuracy(net, train);
|
2013-12-10 22:30:42 +04:00
|
|
|
fprintf(stderr, "\nTRAIN: %f\n", train_acc);
|
2014-01-29 04:28:42 +04:00
|
|
|
float test_acc = network_accuracy(net, test);
|
2013-12-10 22:30:42 +04:00
|
|
|
fprintf(stderr, "TEST: %f\n\n", test_acc);
|
|
|
|
printf("%d, %f, %f\n", count, train_acc, test_acc);
|
2014-02-14 22:26:31 +04:00
|
|
|
//lr *= .5;
|
2013-12-10 22:30:42 +04:00
|
|
|
}
|
2013-12-03 04:41:40 +04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-12-07 21:38:50 +04:00
|
|
|
void test_ensemble()
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
srand(888888);
|
|
|
|
data d = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
|
|
|
|
normalize_data_rows(d);
|
|
|
|
data test = load_categorical_data_csv("mnist/mnist_test.csv", 0,10);
|
|
|
|
normalize_data_rows(test);
|
|
|
|
data train = d;
|
2014-01-28 11:16:56 +04:00
|
|
|
// data *split = split_data(d, 1, 10);
|
|
|
|
// data train = split[0];
|
|
|
|
// data test = split[1];
|
2013-12-07 21:38:50 +04:00
|
|
|
matrix prediction = make_matrix(test.y.rows, test.y.cols);
|
|
|
|
int n = 30;
|
|
|
|
for(i = 0; i < n; ++i){
|
|
|
|
int count = 0;
|
2014-01-29 04:28:42 +04:00
|
|
|
float lr = .0005;
|
|
|
|
float momentum = .9;
|
|
|
|
float decay = .01;
|
2013-12-07 21:38:50 +04:00
|
|
|
network net = parse_network_cfg("nist.cfg");
|
2013-12-10 22:30:42 +04:00
|
|
|
while(++count <= 15){
|
2014-01-29 04:28:42 +04:00
|
|
|
float acc = train_network_sgd(net, train, train.X.rows, lr, momentum, decay);
|
2013-12-10 22:30:42 +04:00
|
|
|
printf("Training Accuracy: %lf Learning Rate: %f Momentum: %f Decay: %f\n", acc, lr, momentum, decay );
|
2013-12-07 21:38:50 +04:00
|
|
|
lr /= 2;
|
|
|
|
}
|
|
|
|
matrix partial = network_predict_data(net, test);
|
2014-01-29 04:28:42 +04:00
|
|
|
float acc = matrix_accuracy(test.y, partial);
|
2013-12-07 21:38:50 +04:00
|
|
|
printf("Model Accuracy: %lf\n", acc);
|
|
|
|
matrix_add_matrix(partial, prediction);
|
|
|
|
acc = matrix_accuracy(test.y, prediction);
|
|
|
|
printf("Current Ensemble Accuracy: %lf\n", acc);
|
|
|
|
free_matrix(partial);
|
|
|
|
}
|
2014-01-29 04:28:42 +04:00
|
|
|
float acc = matrix_accuracy(test.y, prediction);
|
2013-12-07 21:38:50 +04:00
|
|
|
printf("Full Ensemble Accuracy: %lf\n", acc);
|
|
|
|
}
|
|
|
|
|
2013-12-03 04:41:40 +04:00
|
|
|
void test_random_classify()
|
2013-11-13 22:50:38 +04:00
|
|
|
{
|
2013-12-03 04:41:40 +04:00
|
|
|
network net = parse_network_cfg("connected.cfg");
|
2013-11-13 22:50:38 +04:00
|
|
|
matrix m = csv_to_matrix("train.csv");
|
2013-12-07 01:26:09 +04:00
|
|
|
//matrix ho = hold_out_matrix(&m, 2500);
|
2014-01-29 04:28:42 +04:00
|
|
|
float *truth = pop_column(&m, 0);
|
|
|
|
//float *ho_truth = pop_column(&ho, 0);
|
2013-11-13 22:50:38 +04:00
|
|
|
int i;
|
|
|
|
clock_t start = clock(), end;
|
2013-11-07 04:09:41 +04:00
|
|
|
int count = 0;
|
2013-11-13 22:50:38 +04:00
|
|
|
while(++count <= 300){
|
|
|
|
for(i = 0; i < m.rows; ++i){
|
|
|
|
int index = rand()%m.rows;
|
2014-01-29 04:28:42 +04:00
|
|
|
//image p = float_to_image(1690,1,1,m.vals[index]);
|
2013-11-13 22:50:38 +04:00
|
|
|
//normalize_image(p);
|
|
|
|
forward_network(net, m.vals[index]);
|
2014-01-29 04:28:42 +04:00
|
|
|
float *out = get_network_output(net);
|
|
|
|
float *delta = get_network_delta(net);
|
2013-11-13 22:50:38 +04:00
|
|
|
//printf("%f\n", out[0]);
|
|
|
|
delta[0] = truth[index] - out[0];
|
2013-12-06 01:17:16 +04:00
|
|
|
// printf("%f\n", delta[0]);
|
2013-11-13 22:50:38 +04:00
|
|
|
//printf("%f %f\n", truth[index], out[0]);
|
2013-12-07 01:26:09 +04:00
|
|
|
//backward_network(net, m.vals[index], );
|
|
|
|
update_network(net, .00001, 0,0);
|
2013-11-13 22:50:38 +04:00
|
|
|
}
|
2014-01-29 04:28:42 +04:00
|
|
|
//float test_acc = error_network(net, m, truth);
|
|
|
|
//float valid_acc = error_network(net, ho, ho_truth);
|
2013-12-06 01:17:16 +04:00
|
|
|
//printf("%f, %f\n", test_acc, valid_acc);
|
|
|
|
//fprintf(stderr, "%5d: %f Valid: %f\n",count, test_acc, valid_acc);
|
2013-11-13 22:50:38 +04:00
|
|
|
//if(valid_acc > .70) break;
|
|
|
|
}
|
|
|
|
end = clock();
|
|
|
|
FILE *fp = fopen("submission/out.txt", "w");
|
|
|
|
matrix test = csv_to_matrix("test.csv");
|
|
|
|
truth = pop_column(&test, 0);
|
|
|
|
for(i = 0; i < test.rows; ++i){
|
|
|
|
forward_network(net, test.vals[i]);
|
2014-01-29 04:28:42 +04:00
|
|
|
float *out = get_network_output(net);
|
2013-11-13 22:50:38 +04:00
|
|
|
if(fabs(out[0]) < .5) fprintf(fp, "0\n");
|
|
|
|
else fprintf(fp, "1\n");
|
|
|
|
}
|
|
|
|
fclose(fp);
|
2014-01-29 04:28:42 +04:00
|
|
|
printf("Neural Net Learning: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
|
2013-11-13 22:50:38 +04:00
|
|
|
}
|
|
|
|
|
2013-12-07 01:26:09 +04:00
|
|
|
void test_split()
|
2013-11-13 22:50:38 +04:00
|
|
|
{
|
2013-12-07 01:26:09 +04:00
|
|
|
data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
|
2013-12-07 21:38:50 +04:00
|
|
|
data *split = split_data(train, 0, 13);
|
2013-12-07 01:26:09 +04:00
|
|
|
printf("%d, %d, %d\n", train.X.rows, split[0].X.rows, split[1].X.rows);
|
2013-11-07 04:09:41 +04:00
|
|
|
}
|
|
|
|
|
2014-01-25 02:49:02 +04:00
|
|
|
void test_im2row()
|
|
|
|
{
|
|
|
|
int h = 20;
|
|
|
|
int w = 20;
|
|
|
|
int c = 3;
|
|
|
|
int stride = 1;
|
|
|
|
int size = 11;
|
|
|
|
image test = make_random_image(h,w,c);
|
|
|
|
int mc = 1;
|
|
|
|
int mw = ((h-size)/stride+1)*((w-size)/stride+1);
|
|
|
|
int mh = (size*size*c);
|
|
|
|
int msize = mc*mw*mh;
|
2014-01-29 04:28:42 +04:00
|
|
|
float *matrix = calloc(msize, sizeof(float));
|
2014-01-25 02:49:02 +04:00
|
|
|
int i;
|
|
|
|
for(i = 0; i < 1000; ++i){
|
2014-01-28 11:16:56 +04:00
|
|
|
im2col_cpu(test.data, c, h, w, size, stride, matrix);
|
2014-02-14 22:26:31 +04:00
|
|
|
//image render = float_to_image(mh, mw, mc, matrix);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void train_VOC()
|
|
|
|
{
|
2014-02-15 04:09:07 +04:00
|
|
|
network net = parse_network_cfg("cfg/voc_backup_sig_20.cfg");
|
2014-02-14 22:26:31 +04:00
|
|
|
srand(2222222);
|
2014-02-15 04:09:07 +04:00
|
|
|
int i = 20;
|
2014-02-14 22:26:31 +04:00
|
|
|
char *labels[] = {"aeroplane","bicycle","bird","boat","bottle","bus","car","cat","chair","cow","diningtable","dog","horse","motorbike","person","pottedplant","sheep","sofa","train","tvmonitor"};
|
|
|
|
float lr = .00001;
|
|
|
|
float momentum = .9;
|
|
|
|
float decay = 0.01;
|
|
|
|
while(i++ < 1000 || 1){
|
|
|
|
data train = load_data_image_pathfile_random("images/VOC2012/train_paths.txt", 1000, labels, 20, 300, 400);
|
2014-02-15 04:09:07 +04:00
|
|
|
|
2014-02-14 22:26:31 +04:00
|
|
|
image im = float_to_image(300, 400, 3,train.X.vals[0]);
|
|
|
|
show_image(im, "input");
|
2014-02-15 04:09:07 +04:00
|
|
|
visualize_network(net);
|
2014-02-14 22:26:31 +04:00
|
|
|
cvWaitKey(100);
|
2014-02-15 04:09:07 +04:00
|
|
|
|
2014-02-14 22:26:31 +04:00
|
|
|
normalize_data_rows(train);
|
|
|
|
clock_t start = clock(), end;
|
|
|
|
float loss = train_network_sgd(net, train, 1000, lr, momentum, decay);
|
|
|
|
end = clock();
|
|
|
|
printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay);
|
|
|
|
free_data(train);
|
|
|
|
if(i%10==0){
|
|
|
|
char buff[256];
|
2014-02-15 04:09:07 +04:00
|
|
|
sprintf(buff, "cfg/voc_backup_sig_%d.cfg", i);
|
2014-02-14 22:26:31 +04:00
|
|
|
save_network(net, buff);
|
|
|
|
}
|
|
|
|
//lr *= .99;
|
2014-01-25 02:49:02 +04:00
|
|
|
}
|
|
|
|
}
|
2013-12-07 01:26:09 +04:00
|
|
|
|
2014-02-15 04:09:07 +04:00
|
|
|
void features_VOC()
|
|
|
|
{
|
|
|
|
int i,j;
|
|
|
|
network net = parse_network_cfg("cfg/voc_features.cfg");
|
|
|
|
char *path_file = "images/VOC2012/all_paths.txt";
|
|
|
|
char *out_dir = "voc_features/";
|
|
|
|
list *paths = get_paths(path_file);
|
|
|
|
node *n = paths->front;
|
|
|
|
while(n){
|
|
|
|
char *path = (char *)n->val;
|
|
|
|
char buff[1024];
|
|
|
|
sprintf(buff, "%s%s.txt",out_dir, path);
|
|
|
|
FILE *fp = fopen(buff, "w");
|
|
|
|
if(fp == 0) file_error(buff);
|
|
|
|
|
|
|
|
IplImage* src = 0;
|
|
|
|
if( (src = cvLoadImage(path,-1)) == 0 )
|
|
|
|
{
|
|
|
|
printf("Cannot load file image %s\n", path);
|
|
|
|
exit(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
for(i = 0; i < 10; ++i){
|
|
|
|
int w = 1024 - 90*i; //PICKED WITH CAREFUL CROSS-VALIDATION!!!!
|
|
|
|
int h = (int)((double)w/src->width * src->height);
|
|
|
|
IplImage *sized = cvCreateImage(cvSize(w,h), src->depth, src->nChannels);
|
|
|
|
cvResize(src, sized, CV_INTER_LINEAR);
|
|
|
|
image im = ipl_to_image(sized);
|
|
|
|
reset_network_size(net, im.h, im.w, im.c);
|
|
|
|
forward_network(net, im.data);
|
|
|
|
free_image(im);
|
|
|
|
image out = get_network_image_layer(net, 5);
|
|
|
|
fprintf(fp, "%d, %d, %d\n",out.c, out.h, out.w);
|
|
|
|
for(j = 0; j < out.c*out.h*out.w; ++j){
|
|
|
|
if(j != 0)fprintf(fp, ",");
|
|
|
|
fprintf(fp, "%g", out.data[j]);
|
|
|
|
}
|
|
|
|
fprintf(fp, "\n");
|
|
|
|
out.c = 1;
|
|
|
|
show_image(out, "output");
|
|
|
|
cvWaitKey(10);
|
|
|
|
cvReleaseImage(&sized);
|
|
|
|
}
|
|
|
|
fclose(fp);
|
|
|
|
n = n->next;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-11-04 23:11:01 +04:00
|
|
|
int main()
|
|
|
|
{
|
2014-01-29 04:28:42 +04:00
|
|
|
//feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
|
|
|
|
|
2014-01-25 02:49:02 +04:00
|
|
|
//test_blas();
|
2014-01-28 11:16:56 +04:00
|
|
|
//test_convolve_matrix();
|
|
|
|
// test_im2row();
|
2013-12-07 21:38:50 +04:00
|
|
|
//test_split();
|
2014-01-23 23:24:37 +04:00
|
|
|
//test_ensemble();
|
2014-02-14 22:26:31 +04:00
|
|
|
//test_nist();
|
2013-12-06 01:17:16 +04:00
|
|
|
//test_full();
|
2014-02-15 04:09:07 +04:00
|
|
|
//train_VOC();
|
|
|
|
features_VOC();
|
2013-12-03 04:41:40 +04:00
|
|
|
//test_random_preprocess();
|
|
|
|
//test_random_classify();
|
2013-11-13 22:50:38 +04:00
|
|
|
//test_parser();
|
2013-11-04 23:11:01 +04:00
|
|
|
//test_backpropagate();
|
2013-11-07 04:09:41 +04:00
|
|
|
//test_ann();
|
2013-11-04 23:11:01 +04:00
|
|
|
//test_convolve();
|
|
|
|
//test_upsample();
|
|
|
|
//test_rotate();
|
|
|
|
//test_load();
|
2013-11-06 22:37:37 +04:00
|
|
|
//test_network();
|
2013-11-04 23:11:01 +04:00
|
|
|
//test_convolutional_layer();
|
2013-12-03 04:41:40 +04:00
|
|
|
//verify_convolutional_layer();
|
2013-11-04 23:11:01 +04:00
|
|
|
//test_color();
|
2013-12-07 21:38:50 +04:00
|
|
|
//cvWaitKey(0);
|
2013-11-04 23:11:01 +04:00
|
|
|
return 0;
|
|
|
|
}
|