darknet/src/connected_layer.c

105 lines
3.3 KiB
C
Raw Normal View History

2013-11-04 23:11:01 +04:00
#include "connected_layer.h"
2013-12-03 04:41:40 +04:00
#include "utils.h"
2014-01-25 02:49:02 +04:00
#include "mini_blas.h"
2013-11-04 23:11:01 +04:00
#include <math.h>
2013-11-13 22:50:38 +04:00
#include <stdio.h>
2013-11-04 23:11:01 +04:00
#include <stdlib.h>
#include <string.h>
2014-08-08 23:04:15 +04:00
connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, float learning_rate, float momentum, float decay)
2013-11-04 23:11:01 +04:00
{
2013-12-06 01:17:16 +04:00
fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs);
2013-11-04 23:11:01 +04:00
int i;
connected_layer *layer = calloc(1, sizeof(connected_layer));
2014-08-08 23:04:15 +04:00
layer->learning_rate = learning_rate;
layer->momentum = momentum;
layer->decay = decay;
layer->inputs = inputs;
layer->outputs = outputs;
2014-03-13 08:57:34 +04:00
layer->batch=batch;
2013-11-04 23:11:01 +04:00
2014-03-13 08:57:34 +04:00
layer->output = calloc(batch*outputs, sizeof(float*));
layer->delta = calloc(batch*outputs, sizeof(float*));
2013-11-04 23:11:01 +04:00
layer->weight_updates = calloc(inputs*outputs, sizeof(float));
2014-02-14 22:26:31 +04:00
layer->weight_adapt = calloc(inputs*outputs, sizeof(float));
layer->weight_momentum = calloc(inputs*outputs, sizeof(float));
layer->weights = calloc(inputs*outputs, sizeof(float));
2014-02-14 22:26:31 +04:00
float scale = 1./inputs;
2014-08-09 19:16:37 +04:00
scale = .05;
2013-11-04 23:11:01 +04:00
for(i = 0; i < inputs*outputs; ++i)
2014-08-09 19:16:37 +04:00
layer->weights[i] = scale*2*(rand_uniform()-.5);
2013-11-04 23:11:01 +04:00
layer->bias_updates = calloc(outputs, sizeof(float));
2014-02-14 22:26:31 +04:00
layer->bias_adapt = calloc(outputs, sizeof(float));
layer->bias_momentum = calloc(outputs, sizeof(float));
layer->biases = calloc(outputs, sizeof(float));
2013-11-04 23:11:01 +04:00
for(i = 0; i < outputs; ++i)
2013-12-03 04:41:40 +04:00
//layer->biases[i] = rand_normal()*scale + scale;
2014-02-14 22:26:31 +04:00
layer->biases[i] = 1;
2013-11-04 23:11:01 +04:00
2013-12-03 04:41:40 +04:00
layer->activation = activation;
2013-11-04 23:11:01 +04:00
return layer;
}
2014-08-08 23:04:15 +04:00
void update_connected_layer(connected_layer layer)
2013-11-04 23:11:01 +04:00
{
2014-01-25 02:49:02 +04:00
int i;
2013-11-04 23:11:01 +04:00
for(i = 0; i < layer.outputs; ++i){
2014-08-08 23:04:15 +04:00
layer.bias_momentum[i] = layer.learning_rate*(layer.bias_updates[i]) + layer.momentum*layer.bias_momentum[i];
2014-01-25 02:49:02 +04:00
layer.biases[i] += layer.bias_momentum[i];
}
for(i = 0; i < layer.outputs*layer.inputs; ++i){
2014-08-08 23:04:15 +04:00
layer.weight_momentum[i] = layer.learning_rate*(layer.weight_updates[i] - layer.decay*layer.weights[i]) + layer.momentum*layer.weight_momentum[i];
2014-01-25 02:49:02 +04:00
layer.weights[i] += layer.weight_momentum[i];
2013-11-04 23:11:01 +04:00
}
memset(layer.bias_updates, 0, layer.outputs*sizeof(float));
memset(layer.weight_updates, 0, layer.outputs*layer.inputs*sizeof(float));
2013-11-04 23:11:01 +04:00
}
2014-08-08 23:04:15 +04:00
void forward_connected_layer(connected_layer layer, float *input)
2013-11-04 23:11:01 +04:00
{
2014-07-14 09:07:51 +04:00
int i;
for(i = 0; i < layer.batch; ++i){
memcpy(layer.output+i*layer.outputs, layer.biases, layer.outputs*sizeof(float));
}
2014-03-13 08:57:34 +04:00
int m = layer.batch;
2014-01-25 02:49:02 +04:00
int k = layer.inputs;
int n = layer.outputs;
float *a = input;
float *b = layer.weights;
float *c = layer.output;
2014-01-25 02:49:02 +04:00
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
2014-08-08 23:04:15 +04:00
activate_array(layer.output, layer.outputs*layer.batch, layer.activation);
2013-11-04 23:11:01 +04:00
}
2014-05-10 02:14:52 +04:00
void backward_connected_layer(connected_layer layer, float *input, float *delta)
2013-11-04 23:11:01 +04:00
{
2014-01-25 02:49:02 +04:00
int i;
2014-03-13 08:57:34 +04:00
for(i = 0; i < layer.outputs*layer.batch; ++i){
2014-01-25 02:49:02 +04:00
layer.delta[i] *= gradient(layer.output[i], layer.activation);
layer.bias_updates[i%layer.outputs] += layer.delta[i];
2013-11-04 23:11:01 +04:00
}
2014-01-25 02:49:02 +04:00
int m = layer.inputs;
2014-03-13 08:57:34 +04:00
int k = layer.batch;
2014-01-25 02:49:02 +04:00
int n = layer.outputs;
float *a = input;
float *b = layer.delta;
float *c = layer.weight_updates;
gemm(1,0,m,n,k,1,a,m,b,n,1,c,n);
2013-11-04 23:11:01 +04:00
2014-07-14 09:07:51 +04:00
m = layer.batch;
2014-05-10 02:14:52 +04:00
k = layer.outputs;
2014-07-14 09:07:51 +04:00
n = layer.inputs;
2014-01-25 02:49:02 +04:00
2014-07-14 09:07:51 +04:00
a = layer.delta;
b = layer.weights;
2014-05-10 02:14:52 +04:00
c = delta;
2014-01-25 02:49:02 +04:00
2014-07-14 09:07:51 +04:00
if(c) gemm(0,1,m,n,k,1,a,k,b,k,0,c,n);
2013-11-04 23:11:01 +04:00
}