darknet/src/detection.c

209 lines
7.3 KiB
C
Raw Normal View History

2015-03-06 21:49:03 +03:00
#include "network.h"
#include "utils.h"
#include "parser.h"
2015-03-23 07:28:45 +03:00
char *class_names[] = {"bg", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
2015-03-06 21:49:03 +03:00
#define AMNT 3
void draw_detection(image im, float *box, int side)
{
2015-03-23 07:28:45 +03:00
int classes = 21;
2015-03-06 21:49:03 +03:00
int elems = 4+classes;
int j;
int r, c;
for(r = 0; r < side; ++r){
for(c = 0; c < side; ++c){
j = (r*side + c) * elems;
//printf("%d\n", j);
//printf("Prob: %f\n", box[j]);
int class = max_index(box+j, classes);
if(box[j+class] > .02 || 1){
//int z;
//for(z = 0; z < classes; ++z) printf("%f %s\n", box[j+z], class_names[z]);
printf("%f %s\n", box[j+class], class_names[class]);
float red = get_color(0,class,classes);
float green = get_color(1,class,classes);
float blue = get_color(2,class,classes);
2015-04-01 20:25:50 +03:00
//float maxheight = distance_from_edge(r, side);
//float maxwidth = distance_from_edge(c, side);
2015-03-06 21:49:03 +03:00
j += classes;
2015-04-01 20:25:50 +03:00
float y = box[j+0];
float x = box[j+1];
x = (x+c)/side;
y = (y+r)/side;
float h = box[j+2]; //*maxheight;
float w = box[j+3]; //*maxwidth;
//printf("coords %f %f %f %f\n", x, y, w, h);
int left = (x-w/2)*im.w;
int right = (x+w/2)*im.w;
int top = (y-h/2)*im.h;
int bot = (y+h/2)*im.h;
2015-03-30 21:09:01 +03:00
draw_box(im, left, top, right, bot, red, green, blue);
2015-03-06 21:49:03 +03:00
}
}
}
//printf("Done\n");
show_image(im, "box");
cvWaitKey(0);
}
void train_detection(char *cfgfile, char *weightfile)
{
char *base = basecfg(cfgfile);
printf("%s\n", base);
2015-03-27 05:13:59 +03:00
float avg_loss = -1;
2015-03-06 21:49:03 +03:00
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
2015-03-24 23:20:56 +03:00
//net.seen = 0;
2015-03-06 21:49:03 +03:00
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = 128;
srand(time(0));
//srand(23410);
int i = net.seen/imgs;
list *plist = get_paths("/home/pjreddie/data/voc/train.txt");
char **paths = (char **)list_to_array(plist);
printf("%d\n", plist->size);
data train, buffer;
2015-04-01 20:25:50 +03:00
int im_dim = 448;
2015-03-12 08:20:15 +03:00
int classes = 20;
2015-03-24 23:20:56 +03:00
int background = 1;
2015-04-01 20:25:50 +03:00
pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, background, &buffer);
2015-03-06 21:49:03 +03:00
clock_t time;
while(1){
i += 1;
time=clock();
pthread_join(load_thread, 0);
train = buffer;
2015-04-01 20:25:50 +03:00
load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, background, &buffer);
2015-03-06 21:49:03 +03:00
2015-04-01 20:25:50 +03:00
//image im = float_to_image(im_dim, im_dim, 3, train.X.vals[114]);
//draw_detection(im, train.y.vals[114], 7);
2015-03-06 21:49:03 +03:00
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
float loss = train_network(net, train);
net.seen += imgs;
2015-03-27 05:13:59 +03:00
if (avg_loss < 0) avg_loss = loss;
2015-03-06 21:49:03 +03:00
avg_loss = avg_loss*.9 + loss*.1;
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
if(i%100==0){
char buff[256];
sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
save_weights(net, buff);
}
free_data(train);
}
}
void validate_detection(char *cfgfile, char *weightfile)
{
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
srand(time(0));
list *plist = get_paths("/home/pjreddie/data/voc/val.txt");
2015-03-12 08:20:15 +03:00
//list *plist = get_paths("/home/pjreddie/data/voc/train.txt");
2015-03-06 21:49:03 +03:00
char **paths = (char **)list_to_array(plist);
int im_size = 448;
2015-03-12 08:20:15 +03:00
int classes = 20;
2015-03-27 05:13:59 +03:00
int background = 0;
int nuisance = 1;
2015-03-30 22:04:03 +03:00
int num_boxes = 7;
int per_box = 4+classes+background+nuisance;
int num_output = num_boxes*num_boxes*per_box;
2015-03-06 21:49:03 +03:00
int m = plist->size;
int i = 0;
int splits = 100;
int num = (i+1)*m/splits - i*m/splits;
fprintf(stderr, "%d\n", m);
data val, buffer;
pthread_t load_thread = load_data_thread(paths, num, 0, 0, num_output, im_size, im_size, &buffer);
clock_t time;
for(i = 1; i <= splits; ++i){
time=clock();
pthread_join(load_thread, 0);
val = buffer;
num = (i+1)*m/splits - i*m/splits;
char **part = paths+(i*m/splits);
if(i != splits) load_thread = load_data_thread(part, num, 0, 0, num_output, im_size, im_size, &buffer);
fprintf(stderr, "%d: Loaded: %lf seconds\n", i, sec(clock()-time));
matrix pred = network_predict_data(net, val);
int j, k, class;
for(j = 0; j < pred.rows; ++j){
2015-03-30 22:04:03 +03:00
for(k = 0; k < pred.cols; k += per_box){
2015-03-24 23:20:56 +03:00
float scale = 1.;
2015-03-30 22:04:03 +03:00
int index = k/per_box;
int row = index / num_boxes;
int col = index % num_boxes;
2015-03-30 21:09:01 +03:00
if (nuisance) scale = 1.-pred.vals[j][k];
for (class = 0; class < classes; ++class){
2015-03-24 23:20:56 +03:00
int ci = k+classes+background+nuisance;
2015-03-30 22:04:03 +03:00
float y = (pred.vals[j][ci + 0] + row)/num_boxes;
float x = (pred.vals[j][ci + 1] + col)/num_boxes;
2015-04-01 20:25:50 +03:00
float h = pred.vals[j][ci + 2]; //* distance_from_edge(row, num_boxes);
h = h*h;
float w = pred.vals[j][ci + 3]; //* distance_from_edge(col, num_boxes);
w = w*w;
2015-03-30 22:04:03 +03:00
printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, scale*pred.vals[j][k+class+background+nuisance], y, x, h, w);
2015-03-06 21:49:03 +03:00
}
}
}
time=clock();
free_data(val);
}
}
void test_detection(char *cfgfile, char *weightfile)
{
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
int im_size = 448;
set_batch_network(&net, 1);
srand(2222222);
clock_t time;
char filename[256];
while(1){
fgets(filename, 256, stdin);
strtok(filename, "\n");
image im = load_image_color(filename, im_size, im_size);
translate_image(im, -128);
scale_image(im, 1/128.);
printf("%d %d %d\n", im.h, im.w, im.c);
float *X = im.data;
time=clock();
float *predictions = network_predict(net, X);
printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time));
draw_detection(im, predictions, 7);
free_image(im);
}
}
void run_detection(int argc, char **argv)
{
if(argc < 4){
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
return;
}
char *cfg = argv[3];
char *weights = (argc > 4) ? argv[4] : 0;
if(0==strcmp(argv[2], "test")) test_detection(cfg, weights);
else if(0==strcmp(argv[2], "train")) train_detection(cfg, weights);
else if(0==strcmp(argv[2], "valid")) validate_detection(cfg, weights);
}