2013-12-03 04:41:40 +04:00
|
|
|
#include "softmax_layer.h"
|
2015-01-23 03:38:24 +03:00
|
|
|
#include "blas.h"
|
|
|
|
#include "cuda.h"
|
2014-10-22 01:49:18 +04:00
|
|
|
#include <float.h>
|
2013-12-03 04:41:40 +04:00
|
|
|
#include <math.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <stdio.h>
|
2015-02-24 05:52:05 +03:00
|
|
|
#include <assert.h>
|
2013-12-03 04:41:40 +04:00
|
|
|
|
2015-05-11 23:46:49 +03:00
|
|
|
softmax_layer make_softmax_layer(int batch, int inputs, int groups)
|
2013-12-03 04:41:40 +04:00
|
|
|
{
|
2015-02-24 05:52:05 +03:00
|
|
|
assert(inputs%groups == 0);
|
2013-12-06 01:17:16 +04:00
|
|
|
fprintf(stderr, "Softmax Layer: %d inputs\n", inputs);
|
2015-05-11 23:46:49 +03:00
|
|
|
softmax_layer l = {0};
|
|
|
|
l.type = SOFTMAX;
|
|
|
|
l.batch = batch;
|
|
|
|
l.groups = groups;
|
|
|
|
l.inputs = inputs;
|
|
|
|
l.outputs = inputs;
|
|
|
|
l.output = calloc(inputs*batch, sizeof(float));
|
|
|
|
l.delta = calloc(inputs*batch, sizeof(float));
|
2016-09-25 09:12:54 +03:00
|
|
|
|
|
|
|
l.forward = forward_softmax_layer;
|
|
|
|
l.backward = backward_softmax_layer;
|
2014-10-22 01:49:18 +04:00
|
|
|
#ifdef GPU
|
2016-09-25 09:12:54 +03:00
|
|
|
l.forward_gpu = forward_softmax_layer_gpu;
|
|
|
|
l.backward_gpu = backward_softmax_layer_gpu;
|
|
|
|
|
2015-05-11 23:46:49 +03:00
|
|
|
l.output_gpu = cuda_make_array(l.output, inputs*batch);
|
|
|
|
l.delta_gpu = cuda_make_array(l.delta, inputs*batch);
|
2014-10-22 01:49:18 +04:00
|
|
|
#endif
|
2015-05-11 23:46:49 +03:00
|
|
|
return l;
|
2013-12-03 04:41:40 +04:00
|
|
|
}
|
|
|
|
|
2016-01-28 23:30:38 +03:00
|
|
|
void softmax_array(float *input, int n, float temp, float *output)
|
2015-02-24 05:52:05 +03:00
|
|
|
{
|
|
|
|
int i;
|
|
|
|
float sum = 0;
|
|
|
|
float largest = -FLT_MAX;
|
|
|
|
for(i = 0; i < n; ++i){
|
|
|
|
if(input[i] > largest) largest = input[i];
|
|
|
|
}
|
|
|
|
for(i = 0; i < n; ++i){
|
2016-01-28 23:30:38 +03:00
|
|
|
sum += exp(input[i]/temp-largest/temp);
|
2015-02-24 05:52:05 +03:00
|
|
|
}
|
2016-01-28 23:30:38 +03:00
|
|
|
if(sum) sum = largest/temp+log(sum);
|
2015-02-24 05:52:05 +03:00
|
|
|
else sum = largest-100;
|
|
|
|
for(i = 0; i < n; ++i){
|
2016-01-28 23:30:38 +03:00
|
|
|
output[i] = exp(input[i]/temp-sum);
|
2015-02-24 05:52:05 +03:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-05-11 23:46:49 +03:00
|
|
|
void forward_softmax_layer(const softmax_layer l, network_state state)
|
2014-01-29 04:28:42 +04:00
|
|
|
{
|
2015-02-24 05:52:05 +03:00
|
|
|
int b;
|
2015-05-11 23:46:49 +03:00
|
|
|
int inputs = l.inputs / l.groups;
|
|
|
|
int batch = l.batch * l.groups;
|
2015-02-24 05:52:05 +03:00
|
|
|
for(b = 0; b < batch; ++b){
|
2016-01-28 23:30:38 +03:00
|
|
|
softmax_array(state.input+b*inputs, inputs, l.temperature, l.output+b*inputs);
|
2014-01-29 04:28:42 +04:00
|
|
|
}
|
|
|
|
}
|
2013-12-03 04:41:40 +04:00
|
|
|
|
2015-05-11 23:46:49 +03:00
|
|
|
void backward_softmax_layer(const softmax_layer l, network_state state)
|
2013-12-03 04:41:40 +04:00
|
|
|
{
|
|
|
|
int i;
|
2015-05-11 23:46:49 +03:00
|
|
|
for(i = 0; i < l.inputs*l.batch; ++i){
|
2015-07-22 02:09:33 +03:00
|
|
|
state.delta[i] += l.delta[i];
|
2013-12-03 04:41:40 +04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|