darknet/examples/darknet.c

507 lines
18 KiB
C
Raw Permalink Normal View History

2017-06-02 06:31:13 +03:00
#include "darknet.h"
2013-11-04 23:11:01 +04:00
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
2016-11-16 11:23:38 +03:00
extern void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top);
extern void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, float hier_thresh, char *outfile, int fullscreen);
extern void run_yolo(int argc, char **argv);
2016-07-20 00:50:01 +03:00
extern void run_detector(int argc, char **argv);
2015-07-31 02:19:14 +03:00
extern void run_coco(int argc, char **argv);
2015-03-06 21:49:03 +03:00
extern void run_captcha(int argc, char **argv);
2015-07-08 10:36:43 +03:00
extern void run_nightmare(int argc, char **argv);
2015-10-09 22:50:43 +03:00
extern void run_classifier(int argc, char **argv);
extern void run_regressor(int argc, char **argv);
2017-05-28 07:41:55 +03:00
extern void run_segmenter(int argc, char **argv);
2016-01-28 23:30:38 +03:00
extern void run_char_rnn(int argc, char **argv);
2016-03-01 00:54:12 +03:00
extern void run_tag(int argc, char **argv);
extern void run_cifar(int argc, char **argv);
2016-03-14 09:18:42 +03:00
extern void run_go(int argc, char **argv);
2016-05-13 21:59:43 +03:00
extern void run_art(int argc, char **argv);
2016-08-06 01:27:07 +03:00
extern void run_super(int argc, char **argv);
extern void run_lsd(int argc, char **argv);
2014-12-17 02:34:10 +03:00
2015-08-17 19:00:12 +03:00
void average(int argc, char *argv[])
{
char *cfgfile = argv[2];
char *outfile = argv[3];
gpu_index = -1;
network *net = parse_network_cfg(cfgfile);
network *sum = parse_network_cfg(cfgfile);
2015-08-17 19:00:12 +03:00
char *weightfile = argv[4];
load_weights(sum, weightfile);
2015-08-17 19:00:12 +03:00
int i, j;
int n = argc - 5;
for(i = 0; i < n; ++i){
weightfile = argv[i+5];
load_weights(net, weightfile);
for(j = 0; j < net->n; ++j){
layer l = net->layers[j];
layer out = sum->layers[j];
2015-08-17 19:00:12 +03:00
if(l.type == CONVOLUTIONAL){
int num = l.n*l.c*l.size*l.size;
axpy_cpu(l.n, 1, l.biases, 1, out.biases, 1);
2016-09-12 23:55:20 +03:00
axpy_cpu(num, 1, l.weights, 1, out.weights, 1);
2016-11-11 19:48:40 +03:00
if(l.batch_normalize){
axpy_cpu(l.n, 1, l.scales, 1, out.scales, 1);
axpy_cpu(l.n, 1, l.rolling_mean, 1, out.rolling_mean, 1);
axpy_cpu(l.n, 1, l.rolling_variance, 1, out.rolling_variance, 1);
}
2015-08-17 19:00:12 +03:00
}
if(l.type == CONNECTED){
axpy_cpu(l.outputs, 1, l.biases, 1, out.biases, 1);
axpy_cpu(l.outputs*l.inputs, 1, l.weights, 1, out.weights, 1);
}
}
}
n = n+1;
for(j = 0; j < net->n; ++j){
layer l = sum->layers[j];
2015-08-17 19:00:12 +03:00
if(l.type == CONVOLUTIONAL){
int num = l.n*l.c*l.size*l.size;
scal_cpu(l.n, 1./n, l.biases, 1);
2016-09-12 23:55:20 +03:00
scal_cpu(num, 1./n, l.weights, 1);
2016-11-11 19:48:40 +03:00
if(l.batch_normalize){
scal_cpu(l.n, 1./n, l.scales, 1);
scal_cpu(l.n, 1./n, l.rolling_mean, 1);
scal_cpu(l.n, 1./n, l.rolling_variance, 1);
}
2015-08-17 19:00:12 +03:00
}
if(l.type == CONNECTED){
scal_cpu(l.outputs, 1./n, l.biases, 1);
scal_cpu(l.outputs*l.inputs, 1./n, l.weights, 1);
}
}
save_weights(sum, outfile);
}
long numops(network *net)
2016-06-20 00:28:15 +03:00
{
int i;
long ops = 0;
for(i = 0; i < net->n; ++i){
layer l = net->layers[i];
2016-06-20 00:28:15 +03:00
if(l.type == CONVOLUTIONAL){
ops += 2l * l.n * l.size*l.size*l.c/l.groups * l.out_h*l.out_w;
2016-06-20 00:28:15 +03:00
} else if(l.type == CONNECTED){
2016-07-20 00:50:01 +03:00
ops += 2l * l.inputs * l.outputs;
2017-06-18 23:05:37 +03:00
} else if (l.type == RNN){
ops += 2l * l.input_layer->inputs * l.input_layer->outputs;
ops += 2l * l.self_layer->inputs * l.self_layer->outputs;
ops += 2l * l.output_layer->inputs * l.output_layer->outputs;
} else if (l.type == GRU){
ops += 2l * l.uz->inputs * l.uz->outputs;
ops += 2l * l.uh->inputs * l.uh->outputs;
ops += 2l * l.ur->inputs * l.ur->outputs;
ops += 2l * l.wz->inputs * l.wz->outputs;
ops += 2l * l.wh->inputs * l.wh->outputs;
ops += 2l * l.wr->inputs * l.wr->outputs;
} else if (l.type == LSTM){
ops += 2l * l.uf->inputs * l.uf->outputs;
ops += 2l * l.ui->inputs * l.ui->outputs;
ops += 2l * l.ug->inputs * l.ug->outputs;
ops += 2l * l.uo->inputs * l.uo->outputs;
ops += 2l * l.wf->inputs * l.wf->outputs;
ops += 2l * l.wi->inputs * l.wi->outputs;
ops += 2l * l.wg->inputs * l.wg->outputs;
ops += 2l * l.wo->inputs * l.wo->outputs;
2016-06-20 00:28:15 +03:00
}
}
2017-10-03 01:17:48 +03:00
return ops;
}
void speed(char *cfgfile, int tics)
{
if (tics == 0) tics = 1000;
network *net = parse_network_cfg(cfgfile);
set_batch_network(net, 1);
2017-10-03 01:17:48 +03:00
int i;
double time=what_time_is_it_now();
image im = make_image(net->w, net->h, net->c*net->batch);
2017-10-03 01:17:48 +03:00
for(i = 0; i < tics; ++i){
network_predict(net, im.data);
}
double t = what_time_is_it_now() - time;
long ops = numops(net);
printf("\n%d evals, %f Seconds\n", tics, t);
printf("Floating Point Operations: %.2f Bn\n", (float)ops/1000000000.);
printf("FLOPS: %.2f Bn\n", (float)ops/1000000000.*tics/t);
printf("Speed: %f sec/eval\n", t/tics);
printf("Speed: %f Hz\n", tics/t);
}
void operations(char *cfgfile)
{
gpu_index = -1;
network *net = parse_network_cfg(cfgfile);
2017-10-03 01:17:48 +03:00
long ops = numops(net);
2016-06-20 00:28:15 +03:00
printf("Floating Point Operations: %ld\n", ops);
2016-07-20 00:50:01 +03:00
printf("Floating Point Operations: %.2f Bn\n", (float)ops/1000000000.);
2016-06-20 00:28:15 +03:00
}
2016-11-11 19:48:40 +03:00
void oneoff(char *cfgfile, char *weightfile, char *outfile)
{
gpu_index = -1;
network *net = parse_network_cfg(cfgfile);
int oldn = net->layers[net->n - 2].n;
int c = net->layers[net->n - 2].c;
scal_cpu(oldn*c, .1, net->layers[net->n - 2].weights, 1);
scal_cpu(oldn, 0, net->layers[net->n - 2].biases, 1);
net->layers[net->n - 2].n = 11921;
net->layers[net->n - 2].biases += 5;
net->layers[net->n - 2].weights += 5*c;
2016-11-11 19:48:40 +03:00
if(weightfile){
load_weights(net, weightfile);
2016-11-11 19:48:40 +03:00
}
net->layers[net->n - 2].biases -= 5;
net->layers[net->n - 2].weights -= 5*c;
net->layers[net->n - 2].n = oldn;
2016-11-11 19:48:40 +03:00
printf("%d\n", oldn);
layer l = net->layers[net->n - 2];
2016-11-11 19:48:40 +03:00
copy_cpu(l.n/3, l.biases, 1, l.biases + l.n/3, 1);
copy_cpu(l.n/3, l.biases, 1, l.biases + 2*l.n/3, 1);
copy_cpu(l.n/3*l.c, l.weights, 1, l.weights + l.n/3*l.c, 1);
copy_cpu(l.n/3*l.c, l.weights, 1, l.weights + 2*l.n/3*l.c, 1);
*net->seen = 0;
2016-11-11 19:48:40 +03:00
save_weights(net, outfile);
}
void oneoff2(char *cfgfile, char *weightfile, char *outfile, int l)
{
gpu_index = -1;
network *net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights_upto(net, weightfile, 0, net->n);
load_weights_upto(net, weightfile, l, net->n);
}
*net->seen = 0;
save_weights_upto(net, outfile, net->n);
}
2015-03-08 21:25:28 +03:00
void partial(char *cfgfile, char *weightfile, char *outfile, int max)
{
2015-08-17 19:00:12 +03:00
gpu_index = -1;
network *net = load_network(cfgfile, weightfile, 1);
2015-07-21 02:16:26 +03:00
save_weights_upto(net, outfile, max);
2015-03-08 21:25:28 +03:00
}
void print_weights(char *cfgfile, char *weightfile, int n)
{
gpu_index = -1;
network *net = load_network(cfgfile, weightfile, 1);
layer l = net->layers[n];
int i, j;
//printf("[");
for(i = 0; i < l.n; ++i){
//printf("[");
for(j = 0; j < l.size*l.size*l.c; ++j){
//if(j > 0) printf(",");
printf("%g ", l.weights[i*l.size*l.size*l.c + j]);
}
printf("\n");
//printf("]%s\n", (i == l.n-1)?"":",");
}
//printf("]");
}
2015-07-31 02:19:14 +03:00
void rescale_net(char *cfgfile, char *weightfile, char *outfile)
{
gpu_index = -1;
network *net = load_network(cfgfile, weightfile, 0);
2015-07-31 02:19:14 +03:00
int i;
for(i = 0; i < net->n; ++i){
layer l = net->layers[i];
2015-07-31 02:19:14 +03:00
if(l.type == CONVOLUTIONAL){
2016-09-12 23:55:20 +03:00
rescale_weights(l, 2, -.5);
2015-07-31 02:19:14 +03:00
break;
}
}
save_weights(net, outfile);
}
2015-06-10 10:11:41 +03:00
void rgbgr_net(char *cfgfile, char *weightfile, char *outfile)
{
2015-06-12 01:38:58 +03:00
gpu_index = -1;
network *net = load_network(cfgfile, weightfile, 0);
2015-06-10 10:11:41 +03:00
int i;
for(i = 0; i < net->n; ++i){
layer l = net->layers[i];
2015-06-10 10:11:41 +03:00
if(l.type == CONVOLUTIONAL){
2016-09-12 23:55:20 +03:00
rgbgr_weights(l);
2015-06-10 10:11:41 +03:00
break;
}
}
save_weights(net, outfile);
}
2016-07-20 00:50:01 +03:00
void reset_normalize_net(char *cfgfile, char *weightfile, char *outfile)
{
gpu_index = -1;
network *net = load_network(cfgfile, weightfile, 0);
2016-07-20 00:50:01 +03:00
int i;
for (i = 0; i < net->n; ++i) {
layer l = net->layers[i];
2016-07-20 00:50:01 +03:00
if (l.type == CONVOLUTIONAL && l.batch_normalize) {
denormalize_convolutional_layer(l);
}
if (l.type == CONNECTED && l.batch_normalize) {
denormalize_connected_layer(l);
}
if (l.type == GRU && l.batch_normalize) {
denormalize_connected_layer(*l.input_z_layer);
denormalize_connected_layer(*l.input_r_layer);
denormalize_connected_layer(*l.input_h_layer);
denormalize_connected_layer(*l.state_z_layer);
denormalize_connected_layer(*l.state_r_layer);
denormalize_connected_layer(*l.state_h_layer);
}
}
save_weights(net, outfile);
}
layer normalize_layer(layer l, int n)
{
int j;
l.batch_normalize=1;
l.scales = calloc(n, sizeof(float));
for(j = 0; j < n; ++j){
l.scales[j] = 1;
}
l.rolling_mean = calloc(n, sizeof(float));
l.rolling_variance = calloc(n, sizeof(float));
return l;
}
2015-11-04 06:23:17 +03:00
void normalize_net(char *cfgfile, char *weightfile, char *outfile)
{
gpu_index = -1;
network *net = load_network(cfgfile, weightfile, 0);
2016-07-20 00:50:01 +03:00
int i;
for(i = 0; i < net->n; ++i){
layer l = net->layers[i];
2016-07-20 00:50:01 +03:00
if(l.type == CONVOLUTIONAL && !l.batch_normalize){
net->layers[i] = normalize_layer(l, l.n);
2016-07-20 00:50:01 +03:00
}
if (l.type == CONNECTED && !l.batch_normalize) {
net->layers[i] = normalize_layer(l, l.outputs);
2016-07-20 00:50:01 +03:00
}
if (l.type == GRU && l.batch_normalize) {
*l.input_z_layer = normalize_layer(*l.input_z_layer, l.input_z_layer->outputs);
*l.input_r_layer = normalize_layer(*l.input_r_layer, l.input_r_layer->outputs);
*l.input_h_layer = normalize_layer(*l.input_h_layer, l.input_h_layer->outputs);
*l.state_z_layer = normalize_layer(*l.state_z_layer, l.state_z_layer->outputs);
*l.state_r_layer = normalize_layer(*l.state_r_layer, l.state_r_layer->outputs);
*l.state_h_layer = normalize_layer(*l.state_h_layer, l.state_h_layer->outputs);
net->layers[i].batch_normalize=1;
2015-11-04 06:23:17 +03:00
}
}
save_weights(net, outfile);
}
2016-09-08 08:27:56 +03:00
void statistics_net(char *cfgfile, char *weightfile)
{
gpu_index = -1;
network *net = load_network(cfgfile, weightfile, 0);
2016-09-08 08:27:56 +03:00
int i;
for (i = 0; i < net->n; ++i) {
layer l = net->layers[i];
2016-09-08 08:27:56 +03:00
if (l.type == CONNECTED && l.batch_normalize) {
printf("Connected Layer %d\n", i);
statistics_connected_layer(l);
}
if (l.type == GRU && l.batch_normalize) {
printf("GRU Layer %d\n", i);
printf("Input Z\n");
statistics_connected_layer(*l.input_z_layer);
printf("Input R\n");
statistics_connected_layer(*l.input_r_layer);
printf("Input H\n");
statistics_connected_layer(*l.input_h_layer);
printf("State Z\n");
statistics_connected_layer(*l.state_z_layer);
printf("State R\n");
statistics_connected_layer(*l.state_r_layer);
printf("State H\n");
statistics_connected_layer(*l.state_h_layer);
}
printf("\n");
}
}
2015-11-04 06:23:17 +03:00
void denormalize_net(char *cfgfile, char *weightfile, char *outfile)
{
gpu_index = -1;
network *net = load_network(cfgfile, weightfile, 0);
2015-11-04 06:23:17 +03:00
int i;
for (i = 0; i < net->n; ++i) {
layer l = net->layers[i];
if ((l.type == DECONVOLUTIONAL || l.type == CONVOLUTIONAL) && l.batch_normalize) {
2015-11-04 06:23:17 +03:00
denormalize_convolutional_layer(l);
net->layers[i].batch_normalize=0;
2016-05-07 02:25:16 +03:00
}
if (l.type == CONNECTED && l.batch_normalize) {
denormalize_connected_layer(l);
net->layers[i].batch_normalize=0;
2016-05-07 02:25:16 +03:00
}
if (l.type == GRU && l.batch_normalize) {
denormalize_connected_layer(*l.input_z_layer);
denormalize_connected_layer(*l.input_r_layer);
denormalize_connected_layer(*l.input_h_layer);
denormalize_connected_layer(*l.state_z_layer);
denormalize_connected_layer(*l.state_r_layer);
denormalize_connected_layer(*l.state_h_layer);
l.input_z_layer->batch_normalize = 0;
l.input_r_layer->batch_normalize = 0;
l.input_h_layer->batch_normalize = 0;
l.state_z_layer->batch_normalize = 0;
l.state_r_layer->batch_normalize = 0;
l.state_h_layer->batch_normalize = 0;
net->layers[i].batch_normalize=0;
2015-11-04 06:23:17 +03:00
}
}
save_weights(net, outfile);
}
void mkimg(char *cfgfile, char *weightfile, int h, int w, int num, char *prefix)
{
network *net = load_network(cfgfile, weightfile, 0);
image *ims = get_weights(net->layers[0]);
int n = net->layers[0].n;
int z;
for(z = 0; z < num; ++z){
image im = make_image(h, w, 3);
fill_image(im, .5);
int i;
for(i = 0; i < 100; ++i){
image r = copy_image(ims[rand()%n]);
rotate_image_cw(r, rand()%4);
random_distort_image(r, 1, 1.5, 1.5);
int dx = rand()%(w-r.w);
int dy = rand()%(h-r.h);
ghost_image(r, im, dx, dy);
free_image(r);
}
char buff[256];
sprintf(buff, "%s/gen_%d", prefix, z);
save_image(im, buff);
free_image(im);
}
}
2015-03-08 21:25:28 +03:00
void visualize(char *cfgfile, char *weightfile)
{
network *net = load_network(cfgfile, weightfile, 0);
2015-03-08 21:25:28 +03:00
visualize_network(net);
2015-08-17 19:00:12 +03:00
#ifdef OPENCV
2015-03-08 21:25:28 +03:00
cvWaitKey(0);
2015-08-17 19:00:12 +03:00
#endif
2015-03-08 21:25:28 +03:00
}
2014-12-17 02:34:10 +03:00
int main(int argc, char **argv)
{
2015-06-11 00:44:10 +03:00
//test_resize("data/bad.jpg");
2015-04-24 20:27:50 +03:00
//test_box();
2015-01-23 03:38:24 +03:00
//test_convolutional_layer();
if(argc < 2){
fprintf(stderr, "usage: %s <function>\n", argv[0]);
return 0;
2014-08-08 23:04:15 +04:00
}
2014-12-17 02:34:10 +03:00
gpu_index = find_int_arg(argc, argv, "-i", 0);
2016-01-28 23:30:38 +03:00
if(find_arg(argc, argv, "-nogpu")) {
gpu_index = -1;
}
2014-12-17 02:34:10 +03:00
#ifndef GPU
gpu_index = -1;
#else
if(gpu_index >= 0){
2016-09-12 23:55:20 +03:00
cuda_set_device(gpu_index);
2014-12-17 02:34:10 +03:00
}
2014-12-12 00:15:26 +03:00
#endif
2014-12-17 02:34:10 +03:00
2016-09-02 02:48:41 +03:00
if (0 == strcmp(argv[1], "average")){
2015-08-17 19:00:12 +03:00
average(argc, argv);
} else if (0 == strcmp(argv[1], "yolo")){
run_yolo(argc, argv);
2016-08-06 01:27:07 +03:00
} else if (0 == strcmp(argv[1], "super")){
run_super(argc, argv);
} else if (0 == strcmp(argv[1], "lsd")){
run_lsd(argc, argv);
2016-07-20 00:50:01 +03:00
} else if (0 == strcmp(argv[1], "detector")){
run_detector(argc, argv);
2016-11-17 23:18:19 +03:00
} else if (0 == strcmp(argv[1], "detect")){
2016-11-27 08:21:04 +03:00
float thresh = find_float_arg(argc, argv, "-thresh", .24);
2016-11-17 23:18:19 +03:00
char *filename = (argc > 4) ? argv[4]: 0;
char *outfile = find_char_arg(argc, argv, "-out", 0);
int fullscreen = find_arg(argc, argv, "-fullscreen");
test_detector("cfg/coco.data", argv[2], argv[3], filename, thresh, .5, outfile, fullscreen);
2016-03-01 00:54:12 +03:00
} else if (0 == strcmp(argv[1], "cifar")){
run_cifar(argc, argv);
2016-03-14 09:18:42 +03:00
} else if (0 == strcmp(argv[1], "go")){
run_go(argc, argv);
2016-01-28 23:30:38 +03:00
} else if (0 == strcmp(argv[1], "rnn")){
run_char_rnn(argc, argv);
2015-07-31 02:19:14 +03:00
} else if (0 == strcmp(argv[1], "coco")){
run_coco(argc, argv);
2016-11-16 11:23:38 +03:00
} else if (0 == strcmp(argv[1], "classify")){
2016-11-17 23:18:19 +03:00
predict_classifier("cfg/imagenet1k.data", argv[2], argv[3], argv[4], 5);
2015-10-09 22:50:43 +03:00
} else if (0 == strcmp(argv[1], "classifier")){
run_classifier(argc, argv);
} else if (0 == strcmp(argv[1], "regressor")){
run_regressor(argc, argv);
2017-05-28 07:41:55 +03:00
} else if (0 == strcmp(argv[1], "segmenter")){
run_segmenter(argc, argv);
2016-05-13 21:59:43 +03:00
} else if (0 == strcmp(argv[1], "art")){
run_art(argc, argv);
2016-03-01 00:54:12 +03:00
} else if (0 == strcmp(argv[1], "tag")){
run_tag(argc, argv);
2016-06-03 01:25:24 +03:00
} else if (0 == strcmp(argv[1], "3d")){
2016-08-06 01:27:07 +03:00
composite_3d(argv[2], argv[3], argv[4], (argc > 5) ? atof(argv[5]) : 0);
2015-04-14 00:09:55 +03:00
} else if (0 == strcmp(argv[1], "test")){
test_resize(argv[2]);
2015-03-06 21:49:03 +03:00
} else if (0 == strcmp(argv[1], "captcha")){
2015-03-08 21:25:28 +03:00
run_captcha(argc, argv);
2015-07-08 10:36:43 +03:00
} else if (0 == strcmp(argv[1], "nightmare")){
run_nightmare(argc, argv);
2015-06-10 10:11:41 +03:00
} else if (0 == strcmp(argv[1], "rgbgr")){
rgbgr_net(argv[2], argv[3], argv[4]);
2016-07-20 00:50:01 +03:00
} else if (0 == strcmp(argv[1], "reset")){
reset_normalize_net(argv[2], argv[3], argv[4]);
2015-11-04 06:23:17 +03:00
} else if (0 == strcmp(argv[1], "denormalize")){
denormalize_net(argv[2], argv[3], argv[4]);
2016-09-08 08:27:56 +03:00
} else if (0 == strcmp(argv[1], "statistics")){
statistics_net(argv[2], argv[3]);
2015-11-04 06:23:17 +03:00
} else if (0 == strcmp(argv[1], "normalize")){
normalize_net(argv[2], argv[3], argv[4]);
2015-07-31 02:19:14 +03:00
} else if (0 == strcmp(argv[1], "rescale")){
rescale_net(argv[2], argv[3], argv[4]);
2016-06-20 00:28:15 +03:00
} else if (0 == strcmp(argv[1], "ops")){
operations(argv[2]);
2016-08-06 01:27:07 +03:00
} else if (0 == strcmp(argv[1], "speed")){
2016-11-11 19:48:40 +03:00
speed(argv[2], (argc > 3 && argv[3]) ? atoi(argv[3]) : 0);
} else if (0 == strcmp(argv[1], "oneoff")){
oneoff(argv[2], argv[3], argv[4]);
} else if (0 == strcmp(argv[1], "oneoff2")){
oneoff2(argv[2], argv[3], argv[4], atoi(argv[5]));
} else if (0 == strcmp(argv[1], "print")){
print_weights(argv[2], argv[3], atoi(argv[4]));
2015-03-08 21:25:28 +03:00
} else if (0 == strcmp(argv[1], "partial")){
partial(argv[2], argv[3], argv[4], atoi(argv[5]));
2016-06-20 00:28:15 +03:00
} else if (0 == strcmp(argv[1], "average")){
average(argc, argv);
2015-03-08 21:25:28 +03:00
} else if (0 == strcmp(argv[1], "visualize")){
visualize(argv[2], (argc > 3) ? argv[3] : 0);
} else if (0 == strcmp(argv[1], "mkimg")){
mkimg(argv[2], argv[3], atoi(argv[4]), atoi(argv[5]), atoi(argv[6]), argv[7]);
2015-06-11 00:44:10 +03:00
} else if (0 == strcmp(argv[1], "imtest")){
test_resize(argv[2]);
2015-03-08 21:25:28 +03:00
} else {
fprintf(stderr, "Not an option: %s\n", argv[1]);
2014-12-18 22:28:42 +03:00
}
return 0;
}