darknet/src/tests.c

531 lines
17 KiB
C
Raw Normal View History

2013-11-04 23:11:01 +04:00
#include "connected_layer.h"
2014-01-28 11:16:56 +04:00
//#include "old_conv.h"
2013-11-04 23:11:01 +04:00
#include "convolutional_layer.h"
#include "maxpool_layer.h"
#include "network.h"
#include "image.h"
#include "parser.h"
2013-11-13 22:50:38 +04:00
#include "data.h"
#include "matrix.h"
2013-12-03 04:41:40 +04:00
#include "utils.h"
2014-01-25 02:49:02 +04:00
#include "mini_blas.h"
2013-11-04 23:11:01 +04:00
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
#define _GNU_SOURCE
#include <fenv.h>
2013-11-04 23:11:01 +04:00
void test_convolve()
{
2014-02-14 22:26:31 +04:00
image dog = load_image("dog.jpg",300,400);
2013-11-04 23:11:01 +04:00
printf("dog channels %d\n", dog.c);
image kernel = make_random_image(3,3,dog.c);
image edge = make_image(dog.h, dog.w, 1);
int i;
clock_t start = clock(), end;
for(i = 0; i < 1000; ++i){
2013-12-03 04:41:40 +04:00
convolve(dog, kernel, 1, 0, edge, 1);
2013-11-04 23:11:01 +04:00
}
end = clock();
printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
2013-11-04 23:11:01 +04:00
show_image_layers(edge, "Test Convolve");
}
2014-01-25 02:49:02 +04:00
void test_convolve_matrix()
{
2014-02-14 22:26:31 +04:00
image dog = load_image("dog.jpg",300,400);
2014-01-25 02:49:02 +04:00
printf("dog channels %d\n", dog.c);
int size = 11;
2014-01-28 11:16:56 +04:00
int stride = 4;
2014-01-25 02:49:02 +04:00
int n = 40;
float *filters = make_random_image(size, size, dog.c*n).data;
2014-01-25 02:49:02 +04:00
int mw = ((dog.h-size)/stride+1)*((dog.w-size)/stride+1);
int mh = (size*size*dog.c);
float *matrix = calloc(mh*mw, sizeof(float));
2014-01-25 02:49:02 +04:00
image edge = make_image((dog.h-size)/stride+1, (dog.w-size)/stride+1, n);
int i;
clock_t start = clock(), end;
for(i = 0; i < 1000; ++i){
im2col_cpu(dog.data, dog.c, dog.h, dog.w, size, stride, matrix);
gemm(0,0,n,mw,mh,1,filters,mh,matrix,mw,1,edge.data,mw);
}
end = clock();
printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
2014-01-25 02:49:02 +04:00
show_image_layers(edge, "Test Convolve");
cvWaitKey(0);
}
2013-11-04 23:11:01 +04:00
void test_color()
{
2014-02-14 22:26:31 +04:00
image dog = load_image("test_color.png", 300, 400);
2013-11-04 23:11:01 +04:00
show_image_layers(dog, "Test Color");
}
2013-12-03 04:41:40 +04:00
void verify_convolutional_layer()
{
srand(0);
int i;
int n = 1;
int stride = 1;
int size = 3;
float eps = .00000001;
2013-12-03 04:41:40 +04:00
image test = make_random_image(5,5, 1);
convolutional_layer layer = *make_convolutional_layer(test.h,test.w,test.c, n, size, stride, RELU);
image out = get_convolutional_image(layer);
float **jacobian = calloc(test.h*test.w*test.c, sizeof(float));
2013-12-03 04:41:40 +04:00
forward_convolutional_layer(layer, test.data);
image base = copy_image(out);
for(i = 0; i < test.h*test.w*test.c; ++i){
test.data[i] += eps;
forward_convolutional_layer(layer, test.data);
image partial = copy_image(out);
subtract_image(partial, base);
scale_image(partial, 1/eps);
jacobian[i] = partial.data;
test.data[i] -= eps;
}
float **jacobian2 = calloc(out.h*out.w*out.c, sizeof(float));
2013-12-03 04:41:40 +04:00
image in_delta = make_image(test.h, test.w, test.c);
image out_delta = get_convolutional_delta(layer);
for(i = 0; i < out.h*out.w*out.c; ++i){
out_delta.data[i] = 1;
backward_convolutional_layer(layer, in_delta.data);
2013-12-03 04:41:40 +04:00
image partial = copy_image(in_delta);
jacobian2[i] = partial.data;
out_delta.data[i] = 0;
}
int j;
float *j1 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float));
float *j2 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float));
2013-12-03 04:41:40 +04:00
for(i = 0; i < test.h*test.w*test.c; ++i){
for(j =0 ; j < out.h*out.w*out.c; ++j){
j1[i*out.h*out.w*out.c + j] = jacobian[i][j];
j2[i*out.h*out.w*out.c + j] = jacobian2[j][i];
printf("%f %f\n", jacobian[i][j], jacobian2[j][i]);
}
}
image mj1 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j1);
image mj2 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j2);
2013-12-03 04:41:40 +04:00
printf("%f %f\n", avg_image_layer(mj1,0), avg_image_layer(mj2,0));
show_image(mj1, "forward jacobian");
show_image(mj2, "backward jacobian");
}
2013-11-04 23:11:01 +04:00
void test_load()
{
2014-02-14 22:26:31 +04:00
image dog = load_image("dog.jpg", 300, 400);
2013-11-04 23:11:01 +04:00
show_image(dog, "Test Load");
show_image_layers(dog, "Test Load");
}
void test_upsample()
{
2014-02-14 22:26:31 +04:00
image dog = load_image("dog.jpg", 300, 400);
2013-11-04 23:11:01 +04:00
int n = 3;
image up = make_image(n*dog.h, n*dog.w, dog.c);
upsample_image(dog, n, up);
show_image(up, "Test Upsample");
show_image_layers(up, "Test Upsample");
}
void test_rotate()
{
int i;
2014-02-14 22:26:31 +04:00
image dog = load_image("dog.jpg",300,400);
2013-11-04 23:11:01 +04:00
clock_t start = clock(), end;
for(i = 0; i < 1001; ++i){
rotate_image(dog);
}
end = clock();
printf("Rotations: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
2013-11-04 23:11:01 +04:00
show_image(dog, "Test Rotate");
image random = make_random_image(3,3,3);
show_image(random, "Test Rotate Random");
rotate_image(random);
show_image(random, "Test Rotate Random");
rotate_image(random);
show_image(random, "Test Rotate Random");
}
2013-11-13 22:50:38 +04:00
void test_parser()
{
2013-11-13 22:50:38 +04:00
network net = parse_network_cfg("test_parser.cfg");
float input[1];
int count = 0;
float avgerr = 0;
2013-12-06 01:17:16 +04:00
while(++count < 100000000){
float v = ((float)rand()/RAND_MAX);
float truth = v*v;
2013-11-13 22:50:38 +04:00
input[0] = v;
forward_network(net, input);
float *out = get_network_output(net);
float *delta = get_network_delta(net);
float err = pow((out[0]-truth),2.);
avgerr = .99 * avgerr + .01 * err;
2013-12-06 01:17:16 +04:00
if(count % 1000000 == 0) printf("%f %f :%f AVG %f \n", truth, out[0], err, avgerr);
2013-11-13 22:50:38 +04:00
delta[0] = truth - out[0];
2013-12-07 01:26:09 +04:00
backward_network(net, input, &truth);
update_network(net, .001,0,0);
}
2013-11-13 22:50:38 +04:00
}
2013-11-13 22:50:38 +04:00
void test_data()
{
2013-12-03 04:41:40 +04:00
char *labels[] = {"cat","dog"};
2014-02-14 22:26:31 +04:00
data train = load_data_image_pathfile_random("train_paths.txt", 101,labels, 2, 300, 400);
2013-12-07 01:26:09 +04:00
free_data(train);
}
2013-12-03 04:41:40 +04:00
void test_full()
{
2013-12-03 04:41:40 +04:00
network net = parse_network_cfg("full.cfg");
2014-02-14 22:26:31 +04:00
srand(2222222);
int i = 800;
2013-12-03 04:41:40 +04:00
char *labels[] = {"cat","dog"};
float lr = .00001;
float momentum = .9;
float decay = 0.01;
2013-12-03 04:41:40 +04:00
while(i++ < 1000 || 1){
2014-02-14 22:26:31 +04:00
visualize_network(net);
cvWaitKey(100);
data train = load_data_image_pathfile_random("train_paths.txt", 1000, labels, 2, 256, 256);
image im = float_to_image(256, 256, 3,train.X.vals[0]);
show_image(im, "input");
cvWaitKey(100);
//scale_data_rows(train, 1./255.);
normalize_data_rows(train);
clock_t start = clock(), end;
float loss = train_network_sgd(net, train, 100, lr, momentum, decay);
end = clock();
printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay);
2013-12-07 01:26:09 +04:00
free_data(train);
2014-02-14 22:26:31 +04:00
if(i%100==0){
char buff[256];
sprintf(buff, "backup_%d.cfg", i);
//save_network(net, buff);
}
//lr *= .99;
2013-12-03 04:41:40 +04:00
}
2013-11-13 22:50:38 +04:00
}
2013-12-03 04:41:40 +04:00
void test_nist()
{
2013-12-07 01:26:09 +04:00
srand(444444);
2013-12-10 22:30:42 +04:00
srand(888888);
network net = parse_network_cfg("nist.cfg");
2013-12-07 01:26:09 +04:00
data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
data test = load_categorical_data_csv("mnist/mnist_test.csv",0,10);
normalize_data_rows(train);
normalize_data_rows(test);
2013-12-10 22:30:42 +04:00
//randomize_data(train);
2013-12-03 04:41:40 +04:00
int count = 0;
float lr = .0005;
float momentum = .9;
2014-02-14 22:26:31 +04:00
float decay = 0.001;
2014-01-23 23:24:37 +04:00
clock_t start = clock(), end;
2014-01-28 11:16:56 +04:00
while(++count <= 100){
//visualize_network(net);
float loss = train_network_sgd(net, train, 1000, lr, momentum, decay);
2014-01-28 11:16:56 +04:00
printf("%5d Training Loss: %lf, Params: %f %f %f, ",count*100, loss, lr, momentum, decay);
2014-01-23 23:24:37 +04:00
end = clock();
printf("Time: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
2014-01-23 23:24:37 +04:00
start=end;
2014-02-14 22:26:31 +04:00
//cvWaitKey(100);
2013-12-10 22:30:42 +04:00
//lr /= 2;
2014-01-28 11:16:56 +04:00
if(count%5 == 0){
float train_acc = network_accuracy(net, train);
2013-12-10 22:30:42 +04:00
fprintf(stderr, "\nTRAIN: %f\n", train_acc);
float test_acc = network_accuracy(net, test);
2013-12-10 22:30:42 +04:00
fprintf(stderr, "TEST: %f\n\n", test_acc);
printf("%d, %f, %f\n", count, train_acc, test_acc);
2014-02-14 22:26:31 +04:00
//lr *= .5;
2013-12-10 22:30:42 +04:00
}
2013-12-03 04:41:40 +04:00
}
}
2013-12-07 21:38:50 +04:00
void test_ensemble()
{
int i;
srand(888888);
data d = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
normalize_data_rows(d);
data test = load_categorical_data_csv("mnist/mnist_test.csv", 0,10);
normalize_data_rows(test);
data train = d;
2014-01-28 11:16:56 +04:00
// data *split = split_data(d, 1, 10);
// data train = split[0];
// data test = split[1];
2013-12-07 21:38:50 +04:00
matrix prediction = make_matrix(test.y.rows, test.y.cols);
int n = 30;
for(i = 0; i < n; ++i){
int count = 0;
float lr = .0005;
float momentum = .9;
float decay = .01;
2013-12-07 21:38:50 +04:00
network net = parse_network_cfg("nist.cfg");
2013-12-10 22:30:42 +04:00
while(++count <= 15){
float acc = train_network_sgd(net, train, train.X.rows, lr, momentum, decay);
2013-12-10 22:30:42 +04:00
printf("Training Accuracy: %lf Learning Rate: %f Momentum: %f Decay: %f\n", acc, lr, momentum, decay );
2013-12-07 21:38:50 +04:00
lr /= 2;
}
matrix partial = network_predict_data(net, test);
float acc = matrix_accuracy(test.y, partial);
2013-12-07 21:38:50 +04:00
printf("Model Accuracy: %lf\n", acc);
matrix_add_matrix(partial, prediction);
acc = matrix_accuracy(test.y, prediction);
printf("Current Ensemble Accuracy: %lf\n", acc);
free_matrix(partial);
}
float acc = matrix_accuracy(test.y, prediction);
2013-12-07 21:38:50 +04:00
printf("Full Ensemble Accuracy: %lf\n", acc);
}
2013-12-03 04:41:40 +04:00
void test_random_classify()
2013-11-13 22:50:38 +04:00
{
2013-12-03 04:41:40 +04:00
network net = parse_network_cfg("connected.cfg");
2013-11-13 22:50:38 +04:00
matrix m = csv_to_matrix("train.csv");
2013-12-07 01:26:09 +04:00
//matrix ho = hold_out_matrix(&m, 2500);
float *truth = pop_column(&m, 0);
//float *ho_truth = pop_column(&ho, 0);
2013-11-13 22:50:38 +04:00
int i;
clock_t start = clock(), end;
int count = 0;
2013-11-13 22:50:38 +04:00
while(++count <= 300){
for(i = 0; i < m.rows; ++i){
int index = rand()%m.rows;
//image p = float_to_image(1690,1,1,m.vals[index]);
2013-11-13 22:50:38 +04:00
//normalize_image(p);
forward_network(net, m.vals[index]);
float *out = get_network_output(net);
float *delta = get_network_delta(net);
2013-11-13 22:50:38 +04:00
//printf("%f\n", out[0]);
delta[0] = truth[index] - out[0];
2013-12-06 01:17:16 +04:00
// printf("%f\n", delta[0]);
2013-11-13 22:50:38 +04:00
//printf("%f %f\n", truth[index], out[0]);
2013-12-07 01:26:09 +04:00
//backward_network(net, m.vals[index], );
update_network(net, .00001, 0,0);
2013-11-13 22:50:38 +04:00
}
//float test_acc = error_network(net, m, truth);
//float valid_acc = error_network(net, ho, ho_truth);
2013-12-06 01:17:16 +04:00
//printf("%f, %f\n", test_acc, valid_acc);
//fprintf(stderr, "%5d: %f Valid: %f\n",count, test_acc, valid_acc);
2013-11-13 22:50:38 +04:00
//if(valid_acc > .70) break;
}
end = clock();
FILE *fp = fopen("submission/out.txt", "w");
matrix test = csv_to_matrix("test.csv");
truth = pop_column(&test, 0);
for(i = 0; i < test.rows; ++i){
forward_network(net, test.vals[i]);
float *out = get_network_output(net);
2013-11-13 22:50:38 +04:00
if(fabs(out[0]) < .5) fprintf(fp, "0\n");
else fprintf(fp, "1\n");
}
fclose(fp);
printf("Neural Net Learning: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
2013-11-13 22:50:38 +04:00
}
2013-12-07 01:26:09 +04:00
void test_split()
2013-11-13 22:50:38 +04:00
{
2013-12-07 01:26:09 +04:00
data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
2013-12-07 21:38:50 +04:00
data *split = split_data(train, 0, 13);
2013-12-07 01:26:09 +04:00
printf("%d, %d, %d\n", train.X.rows, split[0].X.rows, split[1].X.rows);
}
2014-01-25 02:49:02 +04:00
void test_im2row()
{
int h = 20;
int w = 20;
int c = 3;
int stride = 1;
int size = 11;
image test = make_random_image(h,w,c);
int mc = 1;
int mw = ((h-size)/stride+1)*((w-size)/stride+1);
int mh = (size*size*c);
int msize = mc*mw*mh;
float *matrix = calloc(msize, sizeof(float));
2014-01-25 02:49:02 +04:00
int i;
for(i = 0; i < 1000; ++i){
2014-01-28 11:16:56 +04:00
im2col_cpu(test.data, c, h, w, size, stride, matrix);
2014-02-14 22:26:31 +04:00
//image render = float_to_image(mh, mw, mc, matrix);
}
}
void train_VOC()
{
2014-02-18 11:32:18 +04:00
network net = parse_network_cfg("cfg/voc_start.cfg");
2014-02-14 22:26:31 +04:00
srand(2222222);
int i = 20;
2014-02-14 22:26:31 +04:00
char *labels[] = {"aeroplane","bicycle","bird","boat","bottle","bus","car","cat","chair","cow","diningtable","dog","horse","motorbike","person","pottedplant","sheep","sofa","train","tvmonitor"};
float lr = .00001;
float momentum = .9;
float decay = 0.01;
while(i++ < 1000 || 1){
2014-02-18 11:32:18 +04:00
data train = load_data_image_pathfile_random("images/VOC2012/val_paths.txt", 1000, labels, 20, 300, 400);
2014-02-14 22:26:31 +04:00
image im = float_to_image(300, 400, 3,train.X.vals[0]);
show_image(im, "input");
visualize_network(net);
2014-02-14 22:26:31 +04:00
cvWaitKey(100);
2014-02-14 22:26:31 +04:00
normalize_data_rows(train);
clock_t start = clock(), end;
float loss = train_network_sgd(net, train, 1000, lr, momentum, decay);
end = clock();
printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay);
free_data(train);
if(i%10==0){
char buff[256];
2014-02-18 11:32:18 +04:00
sprintf(buff, "cfg/voc_clean_ramp_%d.cfg", i);
2014-02-14 22:26:31 +04:00
save_network(net, buff);
}
//lr *= .99;
2014-01-25 02:49:02 +04:00
}
}
2013-12-07 01:26:09 +04:00
2014-02-18 11:32:18 +04:00
int voc_size(int x)
{
2014-02-18 11:32:18 +04:00
x = x-1+3;
x = x-1+3;
x = (x-1)*2+1;
x = x-1+5;
x = (x-1)*2+1;
x = (x-1)*4+11;
return x;
}
image features_output_size(network net, IplImage *src, int outh, int outw)
{
int h = voc_size(outh);
int w = voc_size(outw);
IplImage *sized = cvCreateImage(cvSize(w,h), src->depth, src->nChannels);
cvResize(src, sized, CV_INTER_LINEAR);
image im = ipl_to_image(sized);
reset_network_size(net, im.h, im.w, im.c);
forward_network(net, im.data);
image out = get_network_image_layer(net, 5);
//printf("%d %d\n%d %d\n", outh, out.h, outw, out.w);
free_image(im);
cvReleaseImage(&sized);
return copy_image(out);
}
void features_VOC(int part, int total)
{
int i,j, count = 0;
network net = parse_network_cfg("cfg/voc_features.cfg");
char *path_file = "images/VOC2012/all_paths.txt";
char *out_dir = "voc_features/";
list *paths = get_paths(path_file);
node *n = paths->front;
2014-02-18 11:32:18 +04:00
int size = paths->size;
for(count = 0; count < part*size/total; ++count) n = n->next;
while(n && count++ < (part+1)*size/total){
char *path = (char *)n->val;
char buff[1024];
sprintf(buff, "%s%s.txt",out_dir, path);
2014-02-18 11:32:18 +04:00
printf("%s\n", path);
FILE *fp = fopen(buff, "w");
if(fp == 0) file_error(buff);
IplImage* src = 0;
if( (src = cvLoadImage(path,-1)) == 0 )
{
printf("Cannot load file image %s\n", path);
exit(0);
}
2014-02-18 11:32:18 +04:00
int w = src->width;
int h = src->height;
int sbin = 8;
int interval = 10;
double scale = pow(2., 1./interval);
int m = (w<h)?w:h;
int max_scale = 1+floor((double)log((double)m/(5.*sbin))/log(scale));
image *ims = calloc(max_scale+interval, sizeof(image));
for(i = 0; i < interval; ++i){
double factor = 1./pow(scale, i);
double ih = round(h*factor);
double iw = round(w*factor);
int ex_h = round(ih/4.) - 2;
int ex_w = round(iw/4.) - 2;
ims[i] = features_output_size(net, src, ex_h, ex_w);
ih = round(h*factor);
iw = round(w*factor);
ex_h = round(ih/8.) - 2;
ex_w = round(iw/8.) - 2;
ims[i+interval] = features_output_size(net, src, ex_h, ex_w);
for(j = i+interval; j < max_scale; j += interval){
factor /= 2.;
ih = round(h*factor);
iw = round(w*factor);
ex_h = round(ih/8.) - 2;
ex_w = round(iw/8.) - 2;
ims[j+interval] = features_output_size(net, src, ex_h, ex_w);
}
}
for(i = 0; i < max_scale+interval; ++i){
image out = ims[i];
//printf("%d, %d\n", out.h, out.w);
fprintf(fp, "%d, %d, %d\n",out.c, out.h, out.w);
for(j = 0; j < out.c*out.h*out.w; ++j){
if(j != 0)fprintf(fp, ",");
fprintf(fp, "%g", out.data[j]);
}
fprintf(fp, "\n");
2014-02-18 11:32:18 +04:00
free_image(out);
}
2014-02-18 11:32:18 +04:00
free(ims);
fclose(fp);
2014-02-18 11:32:18 +04:00
cvReleaseImage(&src);
n = n->next;
}
}
2014-02-18 11:32:18 +04:00
int main(int argc, char *argv[])
2013-11-04 23:11:01 +04:00
{
2014-02-18 11:32:18 +04:00
int part = atoi(argv[1]);
int total = atoi(argv[2]);
//feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
2014-01-25 02:49:02 +04:00
//test_blas();
2014-01-28 11:16:56 +04:00
//test_convolve_matrix();
// test_im2row();
2013-12-07 21:38:50 +04:00
//test_split();
2014-01-23 23:24:37 +04:00
//test_ensemble();
2014-02-14 22:26:31 +04:00
//test_nist();
2013-12-06 01:17:16 +04:00
//test_full();
//train_VOC();
2014-02-18 11:32:18 +04:00
features_VOC(part, total);
2013-12-03 04:41:40 +04:00
//test_random_preprocess();
//test_random_classify();
2013-11-13 22:50:38 +04:00
//test_parser();
2013-11-04 23:11:01 +04:00
//test_backpropagate();
//test_ann();
2013-11-04 23:11:01 +04:00
//test_convolve();
//test_upsample();
//test_rotate();
//test_load();
//test_network();
2013-11-04 23:11:01 +04:00
//test_convolutional_layer();
2013-12-03 04:41:40 +04:00
//verify_convolutional_layer();
2013-11-04 23:11:01 +04:00
//test_color();
2013-12-07 21:38:50 +04:00
//cvWaitKey(0);
2013-11-04 23:11:01 +04:00
return 0;
}