2013-11-13 22:50:38 +04:00
|
|
|
#include <stdio.h>
|
2013-11-04 23:11:01 +04:00
|
|
|
#include "network.h"
|
|
|
|
#include "image.h"
|
2013-11-13 22:50:38 +04:00
|
|
|
#include "data.h"
|
2013-12-03 04:41:40 +04:00
|
|
|
#include "utils.h"
|
2013-11-04 23:11:01 +04:00
|
|
|
|
|
|
|
#include "connected_layer.h"
|
|
|
|
#include "convolutional_layer.h"
|
|
|
|
#include "maxpool_layer.h"
|
2014-04-17 04:05:29 +04:00
|
|
|
#include "normalization_layer.h"
|
2013-12-03 04:41:40 +04:00
|
|
|
#include "softmax_layer.h"
|
2013-11-04 23:11:01 +04:00
|
|
|
|
2014-03-13 08:57:34 +04:00
|
|
|
network make_network(int n, int batch)
|
2013-11-07 04:09:41 +04:00
|
|
|
{
|
|
|
|
network net;
|
|
|
|
net.n = n;
|
2014-03-13 08:57:34 +04:00
|
|
|
net.batch = batch;
|
2013-11-07 04:09:41 +04:00
|
|
|
net.layers = calloc(net.n, sizeof(void *));
|
|
|
|
net.types = calloc(net.n, sizeof(LAYER_TYPE));
|
2013-12-07 01:26:09 +04:00
|
|
|
net.outputs = 0;
|
|
|
|
net.output = 0;
|
2013-11-07 04:09:41 +04:00
|
|
|
return net;
|
|
|
|
}
|
|
|
|
|
2014-02-25 00:21:31 +04:00
|
|
|
void print_convolutional_cfg(FILE *fp, convolutional_layer *l, int first)
|
2014-02-14 22:26:31 +04:00
|
|
|
{
|
|
|
|
int i;
|
2014-02-25 00:21:31 +04:00
|
|
|
fprintf(fp, "[convolutional]\n");
|
2014-03-13 08:57:34 +04:00
|
|
|
if(first) fprintf(fp, "batch=%d\n"
|
|
|
|
"height=%d\n"
|
2014-02-25 00:21:31 +04:00
|
|
|
"width=%d\n"
|
|
|
|
"channels=%d\n",
|
2014-03-13 08:57:34 +04:00
|
|
|
l->batch,l->h, l->w, l->c);
|
2014-02-25 00:21:31 +04:00
|
|
|
fprintf(fp, "filters=%d\n"
|
2014-02-14 22:26:31 +04:00
|
|
|
"size=%d\n"
|
|
|
|
"stride=%d\n"
|
|
|
|
"activation=%s\n",
|
|
|
|
l->n, l->size, l->stride,
|
|
|
|
get_activation_string(l->activation));
|
|
|
|
fprintf(fp, "data=");
|
|
|
|
for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
|
|
|
|
for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
|
2014-04-17 04:05:29 +04:00
|
|
|
/*
|
|
|
|
int j,k;
|
|
|
|
for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
|
|
|
|
for(i = 0; i < l->n; ++i){
|
|
|
|
for(j = l->c-1; j >= 0; --j){
|
|
|
|
for(k = 0; k < l->size*l->size; ++k){
|
|
|
|
fprintf(fp, "%g,", l->filters[i*(l->c*l->size*l->size)+j*l->size*l->size+k]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
*/
|
2014-02-14 22:26:31 +04:00
|
|
|
fprintf(fp, "\n\n");
|
|
|
|
}
|
2014-02-25 00:21:31 +04:00
|
|
|
void print_connected_cfg(FILE *fp, connected_layer *l, int first)
|
2014-02-14 22:26:31 +04:00
|
|
|
{
|
|
|
|
int i;
|
2014-02-25 00:21:31 +04:00
|
|
|
fprintf(fp, "[connected]\n");
|
2014-03-13 08:57:34 +04:00
|
|
|
if(first) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
|
2014-02-25 00:21:31 +04:00
|
|
|
fprintf(fp, "output=%d\n"
|
2014-04-17 04:05:29 +04:00
|
|
|
"activation=%s\n",
|
|
|
|
l->outputs,
|
|
|
|
get_activation_string(l->activation));
|
2014-02-14 22:26:31 +04:00
|
|
|
fprintf(fp, "data=");
|
|
|
|
for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]);
|
|
|
|
for(i = 0; i < l->inputs*l->outputs; ++i) fprintf(fp, "%g,", l->weights[i]);
|
|
|
|
fprintf(fp, "\n\n");
|
|
|
|
}
|
|
|
|
|
2014-02-25 00:21:31 +04:00
|
|
|
void print_maxpool_cfg(FILE *fp, maxpool_layer *l, int first)
|
2014-02-14 22:26:31 +04:00
|
|
|
{
|
2014-02-25 00:21:31 +04:00
|
|
|
fprintf(fp, "[maxpool]\n");
|
2014-03-13 08:57:34 +04:00
|
|
|
if(first) fprintf(fp, "batch=%d\n"
|
2014-04-17 04:05:29 +04:00
|
|
|
"height=%d\n"
|
|
|
|
"width=%d\n"
|
|
|
|
"channels=%d\n",
|
|
|
|
l->batch,l->h, l->w, l->c);
|
2014-02-25 00:21:31 +04:00
|
|
|
fprintf(fp, "stride=%d\n\n", l->stride);
|
2014-02-14 22:26:31 +04:00
|
|
|
}
|
|
|
|
|
2014-04-17 04:05:29 +04:00
|
|
|
void print_normalization_cfg(FILE *fp, normalization_layer *l, int first)
|
|
|
|
{
|
|
|
|
fprintf(fp, "[localresponsenormalization]\n");
|
|
|
|
if(first) fprintf(fp, "batch=%d\n"
|
|
|
|
"height=%d\n"
|
|
|
|
"width=%d\n"
|
|
|
|
"channels=%d\n",
|
|
|
|
l->batch,l->h, l->w, l->c);
|
|
|
|
fprintf(fp, "size=%d\n"
|
|
|
|
"alpha=%g\n"
|
|
|
|
"beta=%g\n"
|
|
|
|
"kappa=%g\n\n", l->size, l->alpha, l->beta, l->kappa);
|
|
|
|
}
|
|
|
|
|
2014-02-25 00:21:31 +04:00
|
|
|
void print_softmax_cfg(FILE *fp, softmax_layer *l, int first)
|
2014-02-14 22:26:31 +04:00
|
|
|
{
|
2014-02-25 00:21:31 +04:00
|
|
|
fprintf(fp, "[softmax]\n");
|
2014-03-13 08:57:34 +04:00
|
|
|
if(first) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
|
2014-02-25 00:21:31 +04:00
|
|
|
fprintf(fp, "\n");
|
2014-02-14 22:26:31 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
void save_network(network net, char *filename)
|
|
|
|
{
|
|
|
|
FILE *fp = fopen(filename, "w");
|
|
|
|
if(!fp) file_error(filename);
|
|
|
|
int i;
|
|
|
|
for(i = 0; i < net.n; ++i)
|
|
|
|
{
|
|
|
|
if(net.types[i] == CONVOLUTIONAL)
|
2014-02-25 00:21:31 +04:00
|
|
|
print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], i==0);
|
2014-02-14 22:26:31 +04:00
|
|
|
else if(net.types[i] == CONNECTED)
|
2014-02-25 00:21:31 +04:00
|
|
|
print_connected_cfg(fp, (connected_layer *)net.layers[i], i==0);
|
2014-02-14 22:26:31 +04:00
|
|
|
else if(net.types[i] == MAXPOOL)
|
2014-02-25 00:21:31 +04:00
|
|
|
print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], i==0);
|
2014-04-17 04:05:29 +04:00
|
|
|
else if(net.types[i] == NORMALIZATION)
|
|
|
|
print_normalization_cfg(fp, (normalization_layer *)net.layers[i], i==0);
|
2014-02-14 22:26:31 +04:00
|
|
|
else if(net.types[i] == SOFTMAX)
|
2014-02-25 00:21:31 +04:00
|
|
|
print_softmax_cfg(fp, (softmax_layer *)net.layers[i], i==0);
|
2014-02-14 22:26:31 +04:00
|
|
|
}
|
|
|
|
fclose(fp);
|
|
|
|
}
|
|
|
|
|
2014-01-29 04:28:42 +04:00
|
|
|
void forward_network(network net, float *input)
|
2013-11-04 23:11:01 +04:00
|
|
|
{
|
|
|
|
int i;
|
|
|
|
for(i = 0; i < net.n; ++i){
|
|
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
2013-11-13 22:50:38 +04:00
|
|
|
forward_convolutional_layer(layer, input);
|
2013-11-04 23:11:01 +04:00
|
|
|
input = layer.output;
|
|
|
|
}
|
|
|
|
else if(net.types[i] == CONNECTED){
|
|
|
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
2013-11-13 22:50:38 +04:00
|
|
|
forward_connected_layer(layer, input);
|
|
|
|
input = layer.output;
|
2013-11-04 23:11:01 +04:00
|
|
|
}
|
2013-12-03 04:41:40 +04:00
|
|
|
else if(net.types[i] == SOFTMAX){
|
|
|
|
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
|
|
|
forward_softmax_layer(layer, input);
|
|
|
|
input = layer.output;
|
|
|
|
}
|
2013-11-04 23:11:01 +04:00
|
|
|
else if(net.types[i] == MAXPOOL){
|
|
|
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
2013-11-13 22:50:38 +04:00
|
|
|
forward_maxpool_layer(layer, input);
|
2013-11-04 23:11:01 +04:00
|
|
|
input = layer.output;
|
|
|
|
}
|
2014-04-17 04:05:29 +04:00
|
|
|
else if(net.types[i] == NORMALIZATION){
|
|
|
|
normalization_layer layer = *(normalization_layer *)net.layers[i];
|
|
|
|
forward_normalization_layer(layer, input);
|
|
|
|
input = layer.output;
|
|
|
|
}
|
2013-11-04 23:11:01 +04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-01-29 04:28:42 +04:00
|
|
|
void update_network(network net, float step, float momentum, float decay)
|
2013-11-06 22:37:37 +04:00
|
|
|
{
|
|
|
|
int i;
|
|
|
|
for(i = 0; i < net.n; ++i){
|
|
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
2013-12-07 01:26:09 +04:00
|
|
|
update_convolutional_layer(layer, step, momentum, decay);
|
2013-11-06 22:37:37 +04:00
|
|
|
}
|
|
|
|
else if(net.types[i] == MAXPOOL){
|
|
|
|
//maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
|
|
|
}
|
2013-12-03 04:41:40 +04:00
|
|
|
else if(net.types[i] == SOFTMAX){
|
|
|
|
//maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
|
|
|
}
|
2014-04-17 04:05:29 +04:00
|
|
|
else if(net.types[i] == NORMALIZATION){
|
|
|
|
//maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
|
|
|
}
|
2013-11-06 22:37:37 +04:00
|
|
|
else if(net.types[i] == CONNECTED){
|
|
|
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
2014-02-14 22:26:31 +04:00
|
|
|
update_connected_layer(layer, step, momentum, decay);
|
2013-11-06 22:37:37 +04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-01-29 04:28:42 +04:00
|
|
|
float *get_network_output_layer(network net, int i)
|
2013-11-13 22:50:38 +04:00
|
|
|
{
|
|
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
|
|
|
return layer.output;
|
|
|
|
} else if(net.types[i] == MAXPOOL){
|
|
|
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
|
|
|
return layer.output;
|
2013-12-03 04:41:40 +04:00
|
|
|
} else if(net.types[i] == SOFTMAX){
|
|
|
|
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
|
|
|
return layer.output;
|
2013-11-13 22:50:38 +04:00
|
|
|
} else if(net.types[i] == CONNECTED){
|
|
|
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
|
|
|
return layer.output;
|
2014-04-17 04:05:29 +04:00
|
|
|
} else if(net.types[i] == NORMALIZATION){
|
|
|
|
normalization_layer layer = *(normalization_layer *)net.layers[i];
|
|
|
|
return layer.output;
|
2013-11-13 22:50:38 +04:00
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
2014-01-29 04:28:42 +04:00
|
|
|
float *get_network_output(network net)
|
2013-11-13 22:50:38 +04:00
|
|
|
{
|
|
|
|
return get_network_output_layer(net, net.n-1);
|
|
|
|
}
|
|
|
|
|
2014-01-29 04:28:42 +04:00
|
|
|
float *get_network_delta_layer(network net, int i)
|
2013-11-13 22:50:38 +04:00
|
|
|
{
|
|
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
|
|
|
return layer.delta;
|
|
|
|
} else if(net.types[i] == MAXPOOL){
|
|
|
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
|
|
|
return layer.delta;
|
2013-12-03 04:41:40 +04:00
|
|
|
} else if(net.types[i] == SOFTMAX){
|
|
|
|
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
|
|
|
return layer.delta;
|
2013-11-13 22:50:38 +04:00
|
|
|
} else if(net.types[i] == CONNECTED){
|
|
|
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
|
|
|
return layer.delta;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2014-01-29 04:28:42 +04:00
|
|
|
float *get_network_delta(network net)
|
2013-11-13 22:50:38 +04:00
|
|
|
{
|
|
|
|
return get_network_delta_layer(net, net.n-1);
|
|
|
|
}
|
|
|
|
|
2014-01-29 04:28:42 +04:00
|
|
|
float calculate_error_network(network net, float *truth)
|
2013-11-06 22:37:37 +04:00
|
|
|
{
|
2014-01-29 04:28:42 +04:00
|
|
|
float sum = 0;
|
|
|
|
float *delta = get_network_delta(net);
|
|
|
|
float *out = get_network_output(net);
|
2013-12-07 01:26:09 +04:00
|
|
|
int i, k = get_network_output_size(net);
|
|
|
|
for(i = 0; i < k; ++i){
|
2014-03-13 08:57:34 +04:00
|
|
|
//printf("%f, ", out[i]);
|
2013-12-07 01:26:09 +04:00
|
|
|
delta[i] = truth[i] - out[i];
|
2014-01-28 11:16:56 +04:00
|
|
|
sum += delta[i]*delta[i];
|
2013-12-07 01:26:09 +04:00
|
|
|
}
|
2014-03-13 08:57:34 +04:00
|
|
|
//printf("\n");
|
2014-01-28 11:16:56 +04:00
|
|
|
return sum;
|
2013-12-07 01:26:09 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
int get_predicted_class_network(network net)
|
|
|
|
{
|
2014-01-29 04:28:42 +04:00
|
|
|
float *out = get_network_output(net);
|
2013-12-07 01:26:09 +04:00
|
|
|
int k = get_network_output_size(net);
|
|
|
|
return max_index(out, k);
|
|
|
|
}
|
|
|
|
|
2014-01-29 04:28:42 +04:00
|
|
|
float backward_network(network net, float *input, float *truth)
|
2013-12-07 01:26:09 +04:00
|
|
|
{
|
2014-01-29 04:28:42 +04:00
|
|
|
float error = calculate_error_network(net, truth);
|
2013-11-06 22:37:37 +04:00
|
|
|
int i;
|
2014-01-29 04:28:42 +04:00
|
|
|
float *prev_input;
|
|
|
|
float *prev_delta;
|
2013-11-06 22:37:37 +04:00
|
|
|
for(i = net.n-1; i >= 0; --i){
|
|
|
|
if(i == 0){
|
2013-11-13 22:50:38 +04:00
|
|
|
prev_input = input;
|
|
|
|
prev_delta = 0;
|
|
|
|
}else{
|
|
|
|
prev_input = get_network_output_layer(net, i-1);
|
|
|
|
prev_delta = get_network_delta_layer(net, i-1);
|
2013-11-06 22:37:37 +04:00
|
|
|
}
|
|
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
2014-01-28 11:16:56 +04:00
|
|
|
learn_convolutional_layer(layer);
|
|
|
|
//learn_convolutional_layer(layer);
|
2014-01-29 04:28:42 +04:00
|
|
|
if(i != 0) backward_convolutional_layer(layer, prev_delta);
|
2013-11-06 22:37:37 +04:00
|
|
|
}
|
|
|
|
else if(net.types[i] == MAXPOOL){
|
2013-12-03 04:41:40 +04:00
|
|
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
|
|
|
if(i != 0) backward_maxpool_layer(layer, prev_input, prev_delta);
|
|
|
|
}
|
2014-04-17 04:05:29 +04:00
|
|
|
else if(net.types[i] == NORMALIZATION){
|
|
|
|
normalization_layer layer = *(normalization_layer *)net.layers[i];
|
|
|
|
if(i != 0) backward_normalization_layer(layer, prev_input, prev_delta);
|
|
|
|
}
|
2013-12-03 04:41:40 +04:00
|
|
|
else if(net.types[i] == SOFTMAX){
|
|
|
|
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
|
|
|
if(i != 0) backward_softmax_layer(layer, prev_input, prev_delta);
|
2013-11-06 22:37:37 +04:00
|
|
|
}
|
|
|
|
else if(net.types[i] == CONNECTED){
|
|
|
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
2013-11-13 22:50:38 +04:00
|
|
|
learn_connected_layer(layer, prev_input);
|
|
|
|
if(i != 0) backward_connected_layer(layer, prev_input, prev_delta);
|
2013-11-06 22:37:37 +04:00
|
|
|
}
|
|
|
|
}
|
2014-01-28 11:16:56 +04:00
|
|
|
return error;
|
2013-11-06 22:37:37 +04:00
|
|
|
}
|
|
|
|
|
2014-01-29 04:28:42 +04:00
|
|
|
float train_network_datum(network net, float *x, float *y, float step, float momentum, float decay)
|
2013-11-06 22:37:37 +04:00
|
|
|
{
|
2014-02-14 22:26:31 +04:00
|
|
|
forward_network(net, x);
|
|
|
|
//int class = get_predicted_class_network(net);
|
|
|
|
float error = backward_network(net, x, y);
|
|
|
|
update_network(net, step, momentum, decay);
|
|
|
|
//return (y[class]?1:0);
|
|
|
|
return error;
|
2013-12-07 01:26:09 +04:00
|
|
|
}
|
|
|
|
|
2014-01-29 04:28:42 +04:00
|
|
|
float train_network_sgd(network net, data d, int n, float step, float momentum,float decay)
|
2013-12-07 01:26:09 +04:00
|
|
|
{
|
|
|
|
int i;
|
2014-01-29 04:28:42 +04:00
|
|
|
float error = 0;
|
2014-02-14 22:26:31 +04:00
|
|
|
int correct = 0;
|
2014-03-13 08:57:34 +04:00
|
|
|
int pos = 0;
|
2013-12-07 21:38:50 +04:00
|
|
|
for(i = 0; i < n; ++i){
|
2013-12-07 01:26:09 +04:00
|
|
|
int index = rand()%d.X.rows;
|
2014-03-13 08:57:34 +04:00
|
|
|
float err = train_network_datum(net, d.X.vals[index], d.y.vals[index], step, momentum, decay);
|
2014-02-14 22:26:31 +04:00
|
|
|
float *y = d.y.vals[index];
|
|
|
|
int class = get_predicted_class_network(net);
|
|
|
|
correct += (y[class]?1:0);
|
2014-03-13 08:57:34 +04:00
|
|
|
if(y[1]){
|
|
|
|
error += err;
|
|
|
|
++pos;
|
|
|
|
}
|
2014-04-17 04:05:29 +04:00
|
|
|
|
2014-03-13 08:57:34 +04:00
|
|
|
|
2014-02-14 22:26:31 +04:00
|
|
|
//printf("%d %f %f\n", i,net.output[0], d.y.vals[index][0]);
|
2013-12-07 21:38:50 +04:00
|
|
|
//if((i+1)%10 == 0){
|
2014-01-29 04:28:42 +04:00
|
|
|
// printf("%d: %f\n", (i+1), (float)correct/(i+1));
|
2013-12-07 21:38:50 +04:00
|
|
|
//}
|
2013-12-07 01:26:09 +04:00
|
|
|
}
|
2014-03-13 08:57:34 +04:00
|
|
|
//printf("Accuracy: %f\n",(float) correct/n);
|
|
|
|
return error/pos;
|
2013-12-07 01:26:09 +04:00
|
|
|
}
|
2014-01-29 04:28:42 +04:00
|
|
|
float train_network_batch(network net, data d, int n, float step, float momentum,float decay)
|
2014-01-23 23:24:37 +04:00
|
|
|
{
|
|
|
|
int i;
|
|
|
|
int correct = 0;
|
|
|
|
for(i = 0; i < n; ++i){
|
|
|
|
int index = rand()%d.X.rows;
|
2014-01-29 04:28:42 +04:00
|
|
|
float *x = d.X.vals[index];
|
|
|
|
float *y = d.y.vals[index];
|
2014-01-23 23:24:37 +04:00
|
|
|
forward_network(net, x);
|
|
|
|
int class = get_predicted_class_network(net);
|
|
|
|
backward_network(net, x, y);
|
|
|
|
correct += (y[class]?1:0);
|
|
|
|
}
|
|
|
|
update_network(net, step, momentum, decay);
|
2014-01-29 04:28:42 +04:00
|
|
|
return (float)correct/n;
|
2014-01-23 23:24:37 +04:00
|
|
|
|
|
|
|
}
|
|
|
|
|
2013-12-07 01:26:09 +04:00
|
|
|
|
2014-01-29 04:28:42 +04:00
|
|
|
void train_network(network net, data d, float step, float momentum, float decay)
|
2013-12-07 01:26:09 +04:00
|
|
|
{
|
|
|
|
int i;
|
|
|
|
int correct = 0;
|
|
|
|
for(i = 0; i < d.X.rows; ++i){
|
|
|
|
correct += train_network_datum(net, d.X.vals[i], d.y.vals[i], step, momentum, decay);
|
2013-12-03 04:41:40 +04:00
|
|
|
if(i%100 == 0){
|
|
|
|
visualize_network(net);
|
2013-12-07 01:26:09 +04:00
|
|
|
cvWaitKey(10);
|
2013-12-03 04:41:40 +04:00
|
|
|
}
|
2013-11-06 22:37:37 +04:00
|
|
|
}
|
2013-12-03 04:41:40 +04:00
|
|
|
visualize_network(net);
|
|
|
|
cvWaitKey(100);
|
2014-03-13 08:57:34 +04:00
|
|
|
fprintf(stderr, "Accuracy: %f\n", (float)correct/d.X.rows);
|
2013-11-06 22:37:37 +04:00
|
|
|
}
|
2013-11-07 04:09:41 +04:00
|
|
|
|
|
|
|
int get_network_output_size_layer(network net, int i)
|
|
|
|
{
|
|
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
2013-11-13 22:50:38 +04:00
|
|
|
image output = get_convolutional_image(layer);
|
|
|
|
return output.h*output.w*output.c;
|
2013-11-07 04:09:41 +04:00
|
|
|
}
|
|
|
|
else if(net.types[i] == MAXPOOL){
|
|
|
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
2013-11-13 22:50:38 +04:00
|
|
|
image output = get_maxpool_image(layer);
|
|
|
|
return output.h*output.w*output.c;
|
2013-11-07 04:09:41 +04:00
|
|
|
}
|
|
|
|
else if(net.types[i] == CONNECTED){
|
|
|
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
|
|
|
return layer.outputs;
|
|
|
|
}
|
2013-12-03 04:41:40 +04:00
|
|
|
else if(net.types[i] == SOFTMAX){
|
|
|
|
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
|
|
|
return layer.inputs;
|
|
|
|
}
|
2013-11-07 04:09:41 +04:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2014-03-13 08:57:34 +04:00
|
|
|
/*
|
2014-04-17 04:05:29 +04:00
|
|
|
int resize_network(network net, int h, int w, int c)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
for (i = 0; i < net.n; ++i){
|
|
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer *layer = (convolutional_layer *)net.layers[i];
|
|
|
|
layer->h = h;
|
|
|
|
layer->w = w;
|
|
|
|
layer->c = c;
|
|
|
|
image output = get_convolutional_image(*layer);
|
|
|
|
h = output.h;
|
|
|
|
w = output.w;
|
|
|
|
c = output.c;
|
|
|
|
}
|
|
|
|
else if(net.types[i] == MAXPOOL){
|
|
|
|
maxpool_layer *layer = (maxpool_layer *)net.layers[i];
|
|
|
|
layer->h = h;
|
|
|
|
layer->w = w;
|
|
|
|
layer->c = c;
|
|
|
|
image output = get_maxpool_image(*layer);
|
|
|
|
h = output.h;
|
|
|
|
w = output.w;
|
|
|
|
c = output.c;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
*/
|
2014-03-13 08:57:34 +04:00
|
|
|
|
|
|
|
int resize_network(network net, int h, int w, int c)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
for (i = 0; i < net.n; ++i){
|
|
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer *layer = (convolutional_layer *)net.layers[i];
|
|
|
|
resize_convolutional_layer(layer, h, w, c);
|
|
|
|
image output = get_convolutional_image(*layer);
|
|
|
|
h = output.h;
|
|
|
|
w = output.w;
|
|
|
|
c = output.c;
|
2014-04-17 04:05:29 +04:00
|
|
|
}else if(net.types[i] == MAXPOOL){
|
2014-03-13 08:57:34 +04:00
|
|
|
maxpool_layer *layer = (maxpool_layer *)net.layers[i];
|
|
|
|
resize_maxpool_layer(layer, h, w, c);
|
|
|
|
image output = get_maxpool_image(*layer);
|
|
|
|
h = output.h;
|
|
|
|
w = output.w;
|
|
|
|
c = output.c;
|
2014-04-17 04:05:29 +04:00
|
|
|
}else if(net.types[i] == NORMALIZATION){
|
|
|
|
normalization_layer *layer = (normalization_layer *)net.layers[i];
|
|
|
|
resize_normalization_layer(layer, h, w, c);
|
|
|
|
image output = get_normalization_image(*layer);
|
|
|
|
h = output.h;
|
|
|
|
w = output.w;
|
|
|
|
c = output.c;
|
|
|
|
}else{
|
2014-03-13 08:57:34 +04:00
|
|
|
error("Cannot resize this type of layer");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
2014-02-15 04:09:07 +04:00
|
|
|
|
2013-11-13 22:50:38 +04:00
|
|
|
int get_network_output_size(network net)
|
2013-11-07 04:09:41 +04:00
|
|
|
{
|
|
|
|
int i = net.n-1;
|
2013-11-13 22:50:38 +04:00
|
|
|
return get_network_output_size_layer(net, i);
|
2013-11-07 04:09:41 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
image get_network_image_layer(network net, int i)
|
|
|
|
{
|
|
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
2013-11-13 22:50:38 +04:00
|
|
|
return get_convolutional_image(layer);
|
2013-11-07 04:09:41 +04:00
|
|
|
}
|
|
|
|
else if(net.types[i] == MAXPOOL){
|
|
|
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
2013-11-13 22:50:38 +04:00
|
|
|
return get_maxpool_image(layer);
|
2013-11-07 04:09:41 +04:00
|
|
|
}
|
2014-04-17 04:05:29 +04:00
|
|
|
else if(net.types[i] == NORMALIZATION){
|
|
|
|
normalization_layer layer = *(normalization_layer *)net.layers[i];
|
|
|
|
return get_normalization_image(layer);
|
|
|
|
}
|
2013-12-03 04:41:40 +04:00
|
|
|
return make_empty_image(0,0,0);
|
2013-11-07 04:09:41 +04:00
|
|
|
}
|
|
|
|
|
2013-11-04 23:11:01 +04:00
|
|
|
image get_network_image(network net)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
for(i = net.n-1; i >= 0; --i){
|
2013-11-13 22:50:38 +04:00
|
|
|
image m = get_network_image_layer(net, i);
|
|
|
|
if(m.h != 0) return m;
|
|
|
|
}
|
2013-12-03 04:41:40 +04:00
|
|
|
return make_empty_image(0,0,0);
|
2013-11-13 22:50:38 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
void visualize_network(network net)
|
|
|
|
{
|
2014-04-11 12:00:27 +04:00
|
|
|
image *prev = 0;
|
2013-11-13 22:50:38 +04:00
|
|
|
int i;
|
2013-12-03 04:41:40 +04:00
|
|
|
char buff[256];
|
|
|
|
for(i = 0; i < net.n; ++i){
|
|
|
|
sprintf(buff, "Layer %d", i);
|
2013-11-04 23:11:01 +04:00
|
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
2014-04-11 12:00:27 +04:00
|
|
|
prev = visualize_convolutional_layer(layer, buff, prev);
|
2014-04-17 04:05:29 +04:00
|
|
|
}
|
|
|
|
if(net.types[i] == NORMALIZATION){
|
|
|
|
normalization_layer layer = *(normalization_layer *)net.layers[i];
|
|
|
|
visualize_normalization_layer(layer, buff);
|
2013-11-04 23:11:01 +04:00
|
|
|
}
|
2013-11-13 22:50:38 +04:00
|
|
|
}
|
2013-11-04 23:11:01 +04:00
|
|
|
}
|
|
|
|
|
2014-01-29 04:28:42 +04:00
|
|
|
float *network_predict(network net, float *input)
|
2013-12-07 21:38:50 +04:00
|
|
|
{
|
|
|
|
forward_network(net, input);
|
2014-01-29 04:28:42 +04:00
|
|
|
float *out = get_network_output(net);
|
2013-12-07 21:38:50 +04:00
|
|
|
return out;
|
|
|
|
}
|
|
|
|
|
|
|
|
matrix network_predict_data(network net, data test)
|
|
|
|
{
|
|
|
|
int i,j;
|
|
|
|
int k = get_network_output_size(net);
|
|
|
|
matrix pred = make_matrix(test.X.rows, k);
|
|
|
|
for(i = 0; i < test.X.rows; ++i){
|
2014-01-29 04:28:42 +04:00
|
|
|
float *out = network_predict(net, test.X.vals[i]);
|
2013-12-07 21:38:50 +04:00
|
|
|
for(j = 0; j < k; ++j){
|
|
|
|
pred.vals[i][j] = out[j];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return pred;
|
|
|
|
}
|
|
|
|
|
2013-12-03 04:41:40 +04:00
|
|
|
void print_network(network net)
|
|
|
|
{
|
|
|
|
int i,j;
|
|
|
|
for(i = 0; i < net.n; ++i){
|
2014-01-29 04:28:42 +04:00
|
|
|
float *output = 0;
|
2013-12-03 04:41:40 +04:00
|
|
|
int n = 0;
|
|
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
|
|
|
output = layer.output;
|
|
|
|
image m = get_convolutional_image(layer);
|
|
|
|
n = m.h*m.w*m.c;
|
|
|
|
}
|
|
|
|
else if(net.types[i] == MAXPOOL){
|
|
|
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
|
|
|
output = layer.output;
|
|
|
|
image m = get_maxpool_image(layer);
|
|
|
|
n = m.h*m.w*m.c;
|
|
|
|
}
|
|
|
|
else if(net.types[i] == CONNECTED){
|
|
|
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
|
|
|
output = layer.output;
|
|
|
|
n = layer.outputs;
|
|
|
|
}
|
|
|
|
else if(net.types[i] == SOFTMAX){
|
|
|
|
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
|
|
|
output = layer.output;
|
|
|
|
n = layer.inputs;
|
|
|
|
}
|
2014-01-29 04:28:42 +04:00
|
|
|
float mean = mean_array(output, n);
|
|
|
|
float vari = variance_array(output, n);
|
2013-12-06 01:17:16 +04:00
|
|
|
fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari);
|
2013-12-03 04:41:40 +04:00
|
|
|
if(n > 100) n = 100;
|
2013-12-06 01:17:16 +04:00
|
|
|
for(j = 0; j < n; ++j) fprintf(stderr, "%f, ", output[j]);
|
|
|
|
if(n == 100)fprintf(stderr,".....\n");
|
|
|
|
fprintf(stderr, "\n");
|
2013-12-03 04:41:40 +04:00
|
|
|
}
|
|
|
|
}
|
2013-12-07 21:38:50 +04:00
|
|
|
|
2014-01-29 04:28:42 +04:00
|
|
|
float network_accuracy(network net, data d)
|
2013-12-07 01:26:09 +04:00
|
|
|
{
|
2013-12-07 21:38:50 +04:00
|
|
|
matrix guess = network_predict_data(net, d);
|
2014-01-29 04:28:42 +04:00
|
|
|
float acc = matrix_accuracy(d.y, guess);
|
2013-12-07 21:38:50 +04:00
|
|
|
free_matrix(guess);
|
|
|
|
return acc;
|
2013-12-07 01:26:09 +04:00
|
|
|
}
|
|
|
|
|
2014-04-11 12:00:27 +04:00
|
|
|
|