darknet/src/detection_layer.c

254 lines
9.4 KiB
C
Raw Normal View History

2015-03-05 01:56:38 +03:00
#include "detection_layer.h"
#include "activations.h"
#include "softmax_layer.h"
#include "blas.h"
2015-06-16 09:22:44 +03:00
#include "box.h"
2015-03-05 01:56:38 +03:00
#include "cuda.h"
2015-04-24 20:27:50 +03:00
#include "utils.h"
2015-03-05 01:56:38 +03:00
#include <stdio.h>
2015-11-09 22:31:39 +03:00
#include <assert.h>
2015-04-24 20:27:50 +03:00
#include <string.h>
2015-03-05 01:56:38 +03:00
#include <stdlib.h>
2015-11-09 22:31:39 +03:00
detection_layer make_detection_layer(int batch, int inputs, int n, int side, int classes, int coords, int rescore)
2014-07-14 09:07:51 +04:00
{
2015-05-11 23:46:49 +03:00
detection_layer l = {0};
l.type = DETECTION;
2015-11-09 22:31:39 +03:00
l.n = n;
2015-05-11 23:46:49 +03:00
l.batch = batch;
l.inputs = inputs;
l.classes = classes;
l.coords = coords;
l.rescore = rescore;
2015-11-09 22:31:39 +03:00
l.side = side;
assert(side*side*((1 + l.coords)*l.n + l.classes) == inputs);
2015-05-11 23:46:49 +03:00
l.cost = calloc(1, sizeof(float));
2015-11-09 22:31:39 +03:00
l.outputs = l.inputs;
l.truths = l.side*l.side*(1+l.coords+l.classes);
l.output = calloc(batch*l.outputs, sizeof(float));
l.delta = calloc(batch*l.outputs, sizeof(float));
#ifdef GPU
l.output_gpu = cuda_make_array(l.output, batch*l.outputs);
l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
#endif
2014-07-14 09:07:51 +04:00
2015-03-05 01:56:38 +03:00
fprintf(stderr, "Detection Layer\n");
2014-07-14 09:07:51 +04:00
srand(0);
2015-05-11 23:46:49 +03:00
return l;
2014-07-14 09:07:51 +04:00
}
2015-05-11 23:46:49 +03:00
void forward_detection_layer(const detection_layer l, network_state state)
2014-07-14 09:07:51 +04:00
{
2015-11-09 22:31:39 +03:00
int locations = l.side*l.side;
2015-03-05 01:56:38 +03:00
int i,j;
2015-11-09 22:31:39 +03:00
memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float));
int b;
if (l.softmax){
for(b = 0; b < l.batch; ++b){
int index = b*l.inputs;
for (i = 0; i < locations; ++i) {
int offset = i*l.classes;
2016-01-28 23:30:38 +03:00
softmax_array(l.output + index + offset, l.classes, 1,
2015-11-09 22:31:39 +03:00
l.output + index + offset);
}
int offset = locations*l.classes;
activate_array(l.output + index + offset, locations*l.n*(1+l.coords), LOGISTIC);
2015-03-12 08:20:15 +03:00
}
}
2015-11-09 22:31:39 +03:00
if(state.train){
float avg_iou = 0;
float avg_cat = 0;
float avg_allcat = 0;
float avg_obj = 0;
float avg_anyobj = 0;
int count = 0;
2015-05-11 23:46:49 +03:00
*(l.cost) = 0;
2015-11-09 22:31:39 +03:00
int size = l.inputs * l.batch;
2015-05-11 23:46:49 +03:00
memset(l.delta, 0, size * sizeof(float));
2015-11-09 22:31:39 +03:00
for (b = 0; b < l.batch; ++b){
int index = b*l.inputs;
for (i = 0; i < locations; ++i) {
int truth_index = (b*locations + i)*(1+l.coords+l.classes);
int is_obj = state.truth[truth_index];
for (j = 0; j < l.n; ++j) {
int p_index = index + locations*l.classes + i*l.n + j;
l.delta[p_index] = l.noobject_scale*(0 - l.output[p_index]);
*(l.cost) += l.noobject_scale*pow(l.output[p_index], 2);
avg_anyobj += l.output[p_index];
}
int best_index = -1;
float best_iou = 0;
float best_rmse = 20;
if (!is_obj){
continue;
}
int class_index = index + i*l.classes;
for(j = 0; j < l.classes; ++j) {
l.delta[class_index+j] = l.class_scale * (state.truth[truth_index+1+j] - l.output[class_index+j]);
*(l.cost) += l.class_scale * pow(state.truth[truth_index+1+j] - l.output[class_index+j], 2);
if(state.truth[truth_index + 1 + j]) avg_cat += l.output[class_index+j];
avg_allcat += l.output[class_index+j];
}
box truth = float_to_box(state.truth + truth_index + 1 + l.classes);
truth.x /= l.side;
truth.y /= l.side;
2015-05-20 20:06:42 +03:00
2015-11-09 22:31:39 +03:00
for(j = 0; j < l.n; ++j){
int box_index = index + locations*(l.classes + l.n) + (i*l.n + j) * l.coords;
box out = float_to_box(l.output + box_index);
out.x /= l.side;
out.y /= l.side;
if (l.sqrt){
out.w = out.w*out.w;
out.h = out.h*out.h;
}
float iou = box_iou(out, truth);
//iou = 0;
float rmse = box_rmse(out, truth);
if(best_iou > 0 || iou > 0){
if(iou > best_iou){
best_iou = iou;
best_index = j;
}
}else{
if(rmse < best_rmse){
best_rmse = rmse;
best_index = j;
}
}
2015-09-09 22:48:40 +03:00
}
2015-11-09 22:31:39 +03:00
if(l.forced){
if(truth.w*truth.h < .1){
best_index = 1;
}else{
best_index = 0;
2015-09-09 22:48:40 +03:00
}
2015-05-20 20:06:42 +03:00
}
2015-11-09 22:31:39 +03:00
int box_index = index + locations*(l.classes + l.n) + (i*l.n + best_index) * l.coords;
int tbox_index = truth_index + 1 + l.classes;
box out = float_to_box(l.output + box_index);
out.x /= l.side;
out.y /= l.side;
if (l.sqrt) {
out.w = out.w*out.w;
out.h = out.h*out.h;
}
float iou = box_iou(out, truth);
2015-12-14 22:57:10 +03:00
//printf("%d,", best_index);
2015-11-09 22:31:39 +03:00
int p_index = index + locations*l.classes + i*l.n + best_index;
*(l.cost) -= l.noobject_scale * pow(l.output[p_index], 2);
*(l.cost) += l.object_scale * pow(1-l.output[p_index], 2);
avg_obj += l.output[p_index];
l.delta[p_index] = l.object_scale * (1.-l.output[p_index]);
if(l.rescore){
l.delta[p_index] = l.object_scale * (iou - l.output[p_index]);
}
l.delta[box_index+0] = l.coord_scale*(state.truth[tbox_index + 0] - l.output[box_index + 0]);
l.delta[box_index+1] = l.coord_scale*(state.truth[tbox_index + 1] - l.output[box_index + 1]);
l.delta[box_index+2] = l.coord_scale*(state.truth[tbox_index + 2] - l.output[box_index + 2]);
l.delta[box_index+3] = l.coord_scale*(state.truth[tbox_index + 3] - l.output[box_index + 3]);
if(l.sqrt){
l.delta[box_index+2] = l.coord_scale*(sqrt(state.truth[tbox_index + 2]) - l.output[box_index + 2]);
l.delta[box_index+3] = l.coord_scale*(sqrt(state.truth[tbox_index + 3]) - l.output[box_index + 3]);
}
*(l.cost) += pow(1-iou, 2);
avg_iou += iou;
++count;
}
if(l.softmax){
gradient_array(l.output + index + locations*l.classes, locations*l.n*(1+l.coords),
LOGISTIC, l.delta + index + locations*l.classes);
2015-05-20 20:06:42 +03:00
}
2014-07-14 09:07:51 +04:00
}
2016-06-06 23:22:45 +03:00
if(1){
float *costs = calloc(l.batch*locations*l.n, sizeof(float));
for (b = 0; b < l.batch; ++b) {
int index = b*l.inputs;
for (i = 0; i < locations; ++i) {
int truth_index = (b*locations + i)*(1+l.coords+l.classes);
for (j = 0; j < l.n; ++j) {
int p_index = index + locations*l.classes + i*l.n + j;
costs[b*locations*l.n + i*l.n + j] = l.delta[p_index]*l.delta[p_index];
}
}
}
int indexes[100];
top_k(costs, l.batch*locations*l.n, 100, indexes);
float cutoff = costs[indexes[99]];
for (b = 0; b < l.batch; ++b) {
int index = b*l.inputs;
for (i = 0; i < locations; ++i) {
int truth_index = (b*locations + i)*(1+l.coords+l.classes);
for (j = 0; j < l.n; ++j) {
int p_index = index + locations*l.classes + i*l.n + j;
if (l.delta[p_index]*l.delta[p_index] < cutoff) l.delta[p_index] = 0;
}
}
}
free(costs);
}
2015-11-09 22:31:39 +03:00
printf("Detection Avg IOU: %f, Pos Cat: %f, All Cat: %f, Pos Obj: %f, Any Obj: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_allcat/(count*l.classes), avg_obj/count, avg_anyobj/(l.batch*locations*l.n), count);
2014-07-14 09:07:51 +04:00
}
}
2015-05-11 23:46:49 +03:00
void backward_detection_layer(const detection_layer l, network_state state)
2014-07-14 09:07:51 +04:00
{
2015-11-09 22:31:39 +03:00
axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1);
2014-07-14 09:07:51 +04:00
}
2015-03-05 01:56:38 +03:00
#ifdef GPU
2015-05-11 23:46:49 +03:00
void forward_detection_layer_gpu(const detection_layer l, network_state state)
2015-03-05 01:56:38 +03:00
{
2015-11-09 22:31:39 +03:00
if(!state.train){
copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1);
return;
}
2015-05-11 23:46:49 +03:00
float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
2015-03-05 01:56:38 +03:00
float *truth_cpu = 0;
2015-03-12 08:20:15 +03:00
if(state.truth){
2015-11-09 22:31:39 +03:00
int num_truth = l.batch*l.side*l.side*(1+l.coords+l.classes);
truth_cpu = calloc(num_truth, sizeof(float));
cuda_pull_array(state.truth, truth_cpu, num_truth);
2015-03-05 01:56:38 +03:00
}
2015-05-11 23:46:49 +03:00
cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
2015-03-12 08:20:15 +03:00
network_state cpu_state;
cpu_state.train = state.train;
cpu_state.truth = truth_cpu;
cpu_state.input = in_cpu;
2015-05-11 23:46:49 +03:00
forward_detection_layer(l, cpu_state);
2015-11-09 22:31:39 +03:00
cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs);
cuda_push_array(l.delta_gpu, l.delta, l.batch*l.inputs);
2015-03-12 08:20:15 +03:00
free(cpu_state.input);
if(cpu_state.truth) free(cpu_state.truth);
2015-03-05 01:56:38 +03:00
}
2015-05-11 23:46:49 +03:00
void backward_detection_layer_gpu(detection_layer l, network_state state)
2015-03-05 01:56:38 +03:00
{
2015-11-09 22:31:39 +03:00
axpy_ongpu(l.batch*l.inputs, 1, l.delta_gpu, 1, state.delta, 1);
//copy_ongpu(l.batch*l.inputs, l.delta_gpu, 1, state.delta, 1);
2015-03-05 01:56:38 +03:00
}
#endif
2014-07-14 09:07:51 +04:00