darknet/src/detection_layer.c

214 lines
7.1 KiB
C
Raw Normal View History

2015-03-05 01:56:38 +03:00
#include "detection_layer.h"
#include "activations.h"
#include "softmax_layer.h"
#include "blas.h"
2015-06-16 09:22:44 +03:00
#include "box.h"
2015-03-05 01:56:38 +03:00
#include "cuda.h"
2015-04-24 20:27:50 +03:00
#include "utils.h"
2015-03-05 01:56:38 +03:00
#include <stdio.h>
2015-04-24 20:27:50 +03:00
#include <string.h>
2015-03-05 01:56:38 +03:00
#include <stdlib.h>
2015-05-11 23:46:49 +03:00
int get_detection_layer_locations(detection_layer l)
2014-07-14 09:07:51 +04:00
{
2015-06-10 10:11:41 +03:00
return l.inputs / (l.classes+l.coords+l.joint+(l.background || l.objectness));
2014-07-14 09:07:51 +04:00
}
2015-05-11 23:46:49 +03:00
int get_detection_layer_output_size(detection_layer l)
2014-07-14 09:07:51 +04:00
{
2015-06-10 10:11:41 +03:00
return get_detection_layer_locations(l)*((l.background || l.objectness) + l.classes + l.coords);
2014-07-14 09:07:51 +04:00
}
2015-06-10 10:11:41 +03:00
detection_layer make_detection_layer(int batch, int inputs, int classes, int coords, int joint, int rescore, int background, int objectness)
2014-07-14 09:07:51 +04:00
{
2015-05-11 23:46:49 +03:00
detection_layer l = {0};
l.type = DETECTION;
2015-03-21 22:25:14 +03:00
2015-05-11 23:46:49 +03:00
l.batch = batch;
l.inputs = inputs;
l.classes = classes;
l.coords = coords;
l.rescore = rescore;
2015-06-10 10:11:41 +03:00
l.objectness = objectness;
2015-06-12 01:38:58 +03:00
l.background = background;
2015-06-10 10:11:41 +03:00
l.joint = joint;
2015-05-11 23:46:49 +03:00
l.cost = calloc(1, sizeof(float));
l.does_cost=1;
int outputs = get_detection_layer_output_size(l);
l.outputs = outputs;
l.output = calloc(batch*outputs, sizeof(float));
l.delta = calloc(batch*outputs, sizeof(float));
2015-03-05 01:56:38 +03:00
#ifdef GPU
2015-09-01 21:21:01 +03:00
l.output_gpu = cuda_make_array(l.output, batch*outputs);
l.delta_gpu = cuda_make_array(l.delta, batch*outputs);
2015-03-05 01:56:38 +03:00
#endif
2014-07-14 09:07:51 +04:00
2015-03-05 01:56:38 +03:00
fprintf(stderr, "Detection Layer\n");
2014-07-14 09:07:51 +04:00
srand(0);
2015-05-11 23:46:49 +03:00
return l;
2014-07-14 09:07:51 +04:00
}
2015-05-11 23:46:49 +03:00
void forward_detection_layer(const detection_layer l, network_state state)
2014-07-14 09:07:51 +04:00
{
2015-03-05 01:56:38 +03:00
int in_i = 0;
int out_i = 0;
2015-05-11 23:46:49 +03:00
int locations = get_detection_layer_locations(l);
2015-03-05 01:56:38 +03:00
int i,j;
2015-05-11 23:46:49 +03:00
for(i = 0; i < l.batch*locations; ++i){
2015-06-10 10:11:41 +03:00
int mask = (!state.truth || state.truth[out_i + (l.background || l.objectness) + l.classes + 2]);
2015-03-05 01:56:38 +03:00
float scale = 1;
2015-06-10 10:11:41 +03:00
if(l.joint) scale = state.input[in_i++];
else if(l.objectness){
2015-05-11 23:46:49 +03:00
l.output[out_i++] = 1-state.input[in_i++];
2015-03-24 23:20:56 +03:00
scale = mask;
}
2015-05-11 23:46:49 +03:00
else if(l.background) l.output[out_i++] = scale*state.input[in_i++];
2015-03-21 22:25:14 +03:00
2015-05-11 23:46:49 +03:00
for(j = 0; j < l.classes; ++j){
l.output[out_i++] = scale*state.input[in_i++];
2015-03-12 08:20:15 +03:00
}
2015-06-10 10:11:41 +03:00
if(l.objectness){
2015-05-04 21:29:21 +03:00
2015-05-11 23:46:49 +03:00
}else if(l.background){
softmax_array(l.output + out_i - l.classes-l.background, l.classes+l.background, l.output + out_i - l.classes-l.background);
activate_array(state.input+in_i, l.coords, LOGISTIC);
2015-03-05 01:56:38 +03:00
}
2015-05-11 23:46:49 +03:00
for(j = 0; j < l.coords; ++j){
l.output[out_i++] = mask*state.input[in_i++];
2015-03-12 08:20:15 +03:00
}
}
2015-05-20 20:06:42 +03:00
float avg_iou = 0;
int count = 0;
2015-05-15 20:25:05 +03:00
if(l.does_cost && state.train){
2015-05-11 23:46:49 +03:00
*(l.cost) = 0;
int size = get_detection_layer_output_size(l) * l.batch;
memset(l.delta, 0, size * sizeof(float));
for (i = 0; i < l.batch*locations; ++i) {
2015-09-09 22:48:40 +03:00
int classes = (l.objectness || l.background)+l.classes;
2015-05-11 23:46:49 +03:00
int offset = i*(classes+l.coords);
2015-05-04 21:29:21 +03:00
for (j = offset; j < offset+classes; ++j) {
2015-05-11 23:46:49 +03:00
*(l.cost) += pow(state.truth[j] - l.output[j], 2);
l.delta[j] = state.truth[j] - l.output[j];
2015-09-09 22:48:40 +03:00
if(l.background && j == offset) l.delta[j] *= .1;
2015-03-21 22:25:14 +03:00
}
2015-05-20 20:06:42 +03:00
2015-04-24 20:27:50 +03:00
box truth;
2015-05-20 20:06:42 +03:00
truth.x = state.truth[j+0]/7;
truth.y = state.truth[j+1]/7;
truth.w = pow(state.truth[j+2], 2);
truth.h = pow(state.truth[j+3], 2);
2015-08-25 04:27:42 +03:00
2015-04-24 20:27:50 +03:00
box out;
2015-05-20 20:06:42 +03:00
out.x = l.output[j+0]/7;
out.y = l.output[j+1]/7;
out.w = pow(l.output[j+2], 2);
out.h = pow(l.output[j+3], 2);
2015-04-24 20:27:50 +03:00
if(!(truth.w*truth.h)) continue;
2015-05-20 20:06:42 +03:00
float iou = box_iou(out, truth);
avg_iou += iou;
2015-05-04 21:29:21 +03:00
++count;
2015-05-20 20:06:42 +03:00
*(l.cost) += pow((1-iou), 2);
2015-05-25 21:53:10 +03:00
l.delta[j+0] = 4 * (state.truth[j+0] - l.output[j+0]);
l.delta[j+1] = 4 * (state.truth[j+1] - l.output[j+1]);
l.delta[j+2] = 4 * (state.truth[j+2] - l.output[j+2]);
l.delta[j+3] = 4 * (state.truth[j+3] - l.output[j+3]);
2015-06-10 10:11:41 +03:00
if(l.rescore){
2015-09-09 22:48:40 +03:00
if(l.objectness){
state.truth[offset] = iou;
l.delta[offset] = state.truth[offset] - l.output[offset];
}
else{
for (j = offset; j < offset+classes; ++j) {
if(state.truth[j]) state.truth[j] = iou;
l.delta[j] = state.truth[j] - l.output[j];
}
2015-05-20 20:06:42 +03:00
}
}
2014-07-14 09:07:51 +04:00
}
2015-05-20 20:06:42 +03:00
printf("Avg IOU: %f\n", avg_iou/count);
2014-07-14 09:07:51 +04:00
}
}
2015-05-11 23:46:49 +03:00
void backward_detection_layer(const detection_layer l, network_state state)
2014-07-14 09:07:51 +04:00
{
2015-05-11 23:46:49 +03:00
int locations = get_detection_layer_locations(l);
2015-03-05 01:56:38 +03:00
int i,j;
int in_i = 0;
int out_i = 0;
2015-05-11 23:46:49 +03:00
for(i = 0; i < l.batch*locations; ++i){
2015-03-05 01:56:38 +03:00
float scale = 1;
float latent_delta = 0;
2015-06-10 10:11:41 +03:00
if(l.joint) scale = state.input[in_i++];
2015-07-22 02:09:33 +03:00
else if (l.objectness) state.delta[in_i++] += -l.delta[out_i++];
else if (l.background) state.delta[in_i++] += scale*l.delta[out_i++];
2015-05-11 23:46:49 +03:00
for(j = 0; j < l.classes; ++j){
latent_delta += state.input[in_i]*l.delta[out_i];
2015-07-22 02:09:33 +03:00
state.delta[in_i++] += scale*l.delta[out_i++];
2015-03-05 01:56:38 +03:00
}
2015-03-12 08:20:15 +03:00
2015-06-10 10:11:41 +03:00
if (l.objectness) {
2015-03-27 05:13:59 +03:00
2015-05-11 23:46:49 +03:00
}else if (l.background) gradient_array(l.output + out_i, l.coords, LOGISTIC, l.delta + out_i);
2015-09-09 22:48:40 +03:00
for (j = 0; j < l.coords; ++j){
2015-07-22 02:09:33 +03:00
state.delta[in_i++] += l.delta[out_i++];
2015-03-05 01:56:38 +03:00
}
2015-07-22 02:09:33 +03:00
if(l.joint) state.delta[in_i-l.coords-l.classes-l.joint] += latent_delta;
2015-03-05 01:56:38 +03:00
}
2014-07-14 09:07:51 +04:00
}
2015-03-05 01:56:38 +03:00
#ifdef GPU
2015-05-11 23:46:49 +03:00
void forward_detection_layer_gpu(const detection_layer l, network_state state)
2015-03-05 01:56:38 +03:00
{
2015-05-11 23:46:49 +03:00
int outputs = get_detection_layer_output_size(l);
float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
2015-03-05 01:56:38 +03:00
float *truth_cpu = 0;
2015-03-12 08:20:15 +03:00
if(state.truth){
2015-05-11 23:46:49 +03:00
truth_cpu = calloc(l.batch*outputs, sizeof(float));
cuda_pull_array(state.truth, truth_cpu, l.batch*outputs);
2015-03-05 01:56:38 +03:00
}
2015-05-11 23:46:49 +03:00
cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
2015-03-12 08:20:15 +03:00
network_state cpu_state;
cpu_state.train = state.train;
cpu_state.truth = truth_cpu;
cpu_state.input = in_cpu;
2015-05-11 23:46:49 +03:00
forward_detection_layer(l, cpu_state);
cuda_push_array(l.output_gpu, l.output, l.batch*outputs);
cuda_push_array(l.delta_gpu, l.delta, l.batch*outputs);
2015-03-12 08:20:15 +03:00
free(cpu_state.input);
if(cpu_state.truth) free(cpu_state.truth);
2015-03-05 01:56:38 +03:00
}
2015-05-11 23:46:49 +03:00
void backward_detection_layer_gpu(detection_layer l, network_state state)
2015-03-05 01:56:38 +03:00
{
2015-05-11 23:46:49 +03:00
int outputs = get_detection_layer_output_size(l);
2015-03-05 01:56:38 +03:00
2015-05-11 23:46:49 +03:00
float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
float *delta_cpu = calloc(l.batch*l.inputs, sizeof(float));
2015-03-12 08:20:15 +03:00
float *truth_cpu = 0;
if(state.truth){
2015-05-11 23:46:49 +03:00
truth_cpu = calloc(l.batch*outputs, sizeof(float));
cuda_pull_array(state.truth, truth_cpu, l.batch*outputs);
2015-03-12 08:20:15 +03:00
}
network_state cpu_state;
cpu_state.train = state.train;
cpu_state.input = in_cpu;
cpu_state.truth = truth_cpu;
cpu_state.delta = delta_cpu;
2015-03-05 01:56:38 +03:00
2015-07-22 02:09:33 +03:00
cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
cuda_pull_array(state.delta, delta_cpu, l.batch*l.inputs);
2015-05-11 23:46:49 +03:00
cuda_pull_array(l.delta_gpu, l.delta, l.batch*outputs);
backward_detection_layer(l, cpu_state);
cuda_push_array(state.delta, delta_cpu, l.batch*l.inputs);
2015-03-05 01:56:38 +03:00
2015-07-31 02:19:14 +03:00
if (truth_cpu) free(truth_cpu);
2015-03-05 01:56:38 +03:00
free(in_cpu);
free(delta_cpu);
}
#endif
2014-07-14 09:07:51 +04:00