darknet/src/network.c

629 lines
20 KiB
C
Raw Normal View History

2013-11-13 22:50:38 +04:00
#include <stdio.h>
2013-11-04 23:11:01 +04:00
#include "network.h"
#include "image.h"
2013-11-13 22:50:38 +04:00
#include "data.h"
2013-12-03 04:41:40 +04:00
#include "utils.h"
2013-11-04 23:11:01 +04:00
#include "connected_layer.h"
#include "convolutional_layer.h"
#include "maxpool_layer.h"
2014-04-17 04:05:29 +04:00
#include "normalization_layer.h"
2013-12-03 04:41:40 +04:00
#include "softmax_layer.h"
2013-11-04 23:11:01 +04:00
2014-03-13 08:57:34 +04:00
network make_network(int n, int batch)
{
network net;
net.n = n;
2014-03-13 08:57:34 +04:00
net.batch = batch;
net.layers = calloc(net.n, sizeof(void *));
net.types = calloc(net.n, sizeof(LAYER_TYPE));
2013-12-07 01:26:09 +04:00
net.outputs = 0;
net.output = 0;
2014-05-10 02:14:52 +04:00
#ifdef GPU
net.input_cl = 0;
#endif
return net;
}
2014-02-25 00:21:31 +04:00
void print_convolutional_cfg(FILE *fp, convolutional_layer *l, int first)
2014-02-14 22:26:31 +04:00
{
int i;
2014-02-25 00:21:31 +04:00
fprintf(fp, "[convolutional]\n");
2014-03-13 08:57:34 +04:00
if(first) fprintf(fp, "batch=%d\n"
"height=%d\n"
2014-02-25 00:21:31 +04:00
"width=%d\n"
"channels=%d\n",
2014-03-13 08:57:34 +04:00
l->batch,l->h, l->w, l->c);
2014-02-25 00:21:31 +04:00
fprintf(fp, "filters=%d\n"
2014-02-14 22:26:31 +04:00
"size=%d\n"
"stride=%d\n"
"activation=%s\n",
l->n, l->size, l->stride,
get_activation_string(l->activation));
fprintf(fp, "data=");
for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
fprintf(fp, "\n\n");
}
2014-02-25 00:21:31 +04:00
void print_connected_cfg(FILE *fp, connected_layer *l, int first)
2014-02-14 22:26:31 +04:00
{
int i;
2014-02-25 00:21:31 +04:00
fprintf(fp, "[connected]\n");
2014-03-13 08:57:34 +04:00
if(first) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
2014-02-25 00:21:31 +04:00
fprintf(fp, "output=%d\n"
2014-04-17 04:05:29 +04:00
"activation=%s\n",
l->outputs,
get_activation_string(l->activation));
2014-02-14 22:26:31 +04:00
fprintf(fp, "data=");
for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]);
for(i = 0; i < l->inputs*l->outputs; ++i) fprintf(fp, "%g,", l->weights[i]);
fprintf(fp, "\n\n");
}
2014-02-25 00:21:31 +04:00
void print_maxpool_cfg(FILE *fp, maxpool_layer *l, int first)
2014-02-14 22:26:31 +04:00
{
2014-02-25 00:21:31 +04:00
fprintf(fp, "[maxpool]\n");
2014-03-13 08:57:34 +04:00
if(first) fprintf(fp, "batch=%d\n"
2014-04-17 04:05:29 +04:00
"height=%d\n"
"width=%d\n"
"channels=%d\n",
l->batch,l->h, l->w, l->c);
2014-02-25 00:21:31 +04:00
fprintf(fp, "stride=%d\n\n", l->stride);
2014-02-14 22:26:31 +04:00
}
2014-04-17 04:05:29 +04:00
void print_normalization_cfg(FILE *fp, normalization_layer *l, int first)
{
fprintf(fp, "[localresponsenormalization]\n");
if(first) fprintf(fp, "batch=%d\n"
"height=%d\n"
"width=%d\n"
"channels=%d\n",
l->batch,l->h, l->w, l->c);
fprintf(fp, "size=%d\n"
"alpha=%g\n"
"beta=%g\n"
"kappa=%g\n\n", l->size, l->alpha, l->beta, l->kappa);
}
2014-02-25 00:21:31 +04:00
void print_softmax_cfg(FILE *fp, softmax_layer *l, int first)
2014-02-14 22:26:31 +04:00
{
2014-02-25 00:21:31 +04:00
fprintf(fp, "[softmax]\n");
2014-03-13 08:57:34 +04:00
if(first) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
2014-02-25 00:21:31 +04:00
fprintf(fp, "\n");
2014-02-14 22:26:31 +04:00
}
void save_network(network net, char *filename)
{
FILE *fp = fopen(filename, "w");
if(!fp) file_error(filename);
int i;
for(i = 0; i < net.n; ++i)
{
if(net.types[i] == CONVOLUTIONAL)
2014-02-25 00:21:31 +04:00
print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], i==0);
2014-02-14 22:26:31 +04:00
else if(net.types[i] == CONNECTED)
2014-02-25 00:21:31 +04:00
print_connected_cfg(fp, (connected_layer *)net.layers[i], i==0);
2014-02-14 22:26:31 +04:00
else if(net.types[i] == MAXPOOL)
2014-02-25 00:21:31 +04:00
print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], i==0);
2014-04-17 04:05:29 +04:00
else if(net.types[i] == NORMALIZATION)
print_normalization_cfg(fp, (normalization_layer *)net.layers[i], i==0);
2014-02-14 22:26:31 +04:00
else if(net.types[i] == SOFTMAX)
2014-02-25 00:21:31 +04:00
print_softmax_cfg(fp, (softmax_layer *)net.layers[i], i==0);
2014-02-14 22:26:31 +04:00
}
fclose(fp);
}
2014-07-14 09:07:51 +04:00
#ifdef GPU
2014-05-10 02:14:52 +04:00
void forward_network(network net, float *input, int train)
2013-11-04 23:11:01 +04:00
{
2014-05-10 02:14:52 +04:00
cl_setup();
size_t size = get_network_input_size(net);
if(!net.input_cl){
net.input_cl = clCreateBuffer(cl.context,
CL_MEM_READ_WRITE, size*sizeof(float), 0, &cl.error);
check_error(cl);
}
cl_write_array(net.input_cl, input, size);
cl_mem input_cl = net.input_cl;
2014-07-14 09:07:51 +04:00
int i;
2013-11-04 23:11:01 +04:00
for(i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
2014-05-10 02:14:52 +04:00
forward_convolutional_layer_gpu(layer, input_cl);
input_cl = layer.output_cl;
2014-07-14 09:07:51 +04:00
input = layer.output;
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
forward_connected_layer(layer, input, train);
input = layer.output;
}
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
forward_softmax_layer(layer, input);
input = layer.output;
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
forward_maxpool_layer(layer, input);
input = layer.output;
}
else if(net.types[i] == NORMALIZATION){
normalization_layer layer = *(normalization_layer *)net.layers[i];
forward_normalization_layer(layer, input);
input = layer.output;
}
}
}
#else
void forward_network(network net, float *input, int train)
{
int i;
for(i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
2013-11-13 22:50:38 +04:00
forward_convolutional_layer(layer, input);
2013-11-04 23:11:01 +04:00
input = layer.output;
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
2014-05-10 02:14:52 +04:00
forward_connected_layer(layer, input, train);
2013-11-13 22:50:38 +04:00
input = layer.output;
2013-11-04 23:11:01 +04:00
}
2013-12-03 04:41:40 +04:00
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
forward_softmax_layer(layer, input);
input = layer.output;
}
2013-11-04 23:11:01 +04:00
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
2013-11-13 22:50:38 +04:00
forward_maxpool_layer(layer, input);
2013-11-04 23:11:01 +04:00
input = layer.output;
}
2014-04-17 04:05:29 +04:00
else if(net.types[i] == NORMALIZATION){
normalization_layer layer = *(normalization_layer *)net.layers[i];
forward_normalization_layer(layer, input);
input = layer.output;
}
2013-11-04 23:11:01 +04:00
}
}
2014-07-14 09:07:51 +04:00
#endif
2013-11-04 23:11:01 +04:00
void update_network(network net, float step, float momentum, float decay)
{
int i;
for(i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
2013-12-07 01:26:09 +04:00
update_convolutional_layer(layer, step, momentum, decay);
}
else if(net.types[i] == MAXPOOL){
//maxpool_layer layer = *(maxpool_layer *)net.layers[i];
}
2013-12-03 04:41:40 +04:00
else if(net.types[i] == SOFTMAX){
//maxpool_layer layer = *(maxpool_layer *)net.layers[i];
}
2014-04-17 04:05:29 +04:00
else if(net.types[i] == NORMALIZATION){
//maxpool_layer layer = *(maxpool_layer *)net.layers[i];
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
2014-02-14 22:26:31 +04:00
update_connected_layer(layer, step, momentum, decay);
}
}
}
float *get_network_output_layer(network net, int i)
2013-11-13 22:50:38 +04:00
{
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
return layer.output;
} else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
return layer.output;
2013-12-03 04:41:40 +04:00
} else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.output;
2013-11-13 22:50:38 +04:00
} else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.output;
2014-04-17 04:05:29 +04:00
} else if(net.types[i] == NORMALIZATION){
normalization_layer layer = *(normalization_layer *)net.layers[i];
return layer.output;
2013-11-13 22:50:38 +04:00
}
return 0;
}
float *get_network_output(network net)
2013-11-13 22:50:38 +04:00
{
return get_network_output_layer(net, net.n-1);
}
float *get_network_delta_layer(network net, int i)
2013-11-13 22:50:38 +04:00
{
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
return layer.delta;
} else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
return layer.delta;
2013-12-03 04:41:40 +04:00
} else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.delta;
2013-11-13 22:50:38 +04:00
} else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.delta;
}
return 0;
}
float *get_network_delta(network net)
2013-11-13 22:50:38 +04:00
{
return get_network_delta_layer(net, net.n-1);
}
float calculate_error_network(network net, float *truth)
{
float sum = 0;
float *delta = get_network_delta(net);
float *out = get_network_output(net);
2014-07-14 09:07:51 +04:00
int i;
for(i = 0; i < get_network_output_size(net)*net.batch; ++i){
//if(i %get_network_output_size(net) == 0) printf("\n");
//printf("%5.2f %5.2f, ", out[i], truth[i]);
//if(i == get_network_output_size(net)) printf("\n");
2013-12-07 01:26:09 +04:00
delta[i] = truth[i] - out[i];
//printf("%f, ", delta[i]);
2014-01-28 11:16:56 +04:00
sum += delta[i]*delta[i];
2013-12-07 01:26:09 +04:00
}
2014-03-13 08:57:34 +04:00
//printf("\n");
2014-01-28 11:16:56 +04:00
return sum;
2013-12-07 01:26:09 +04:00
}
int get_predicted_class_network(network net)
{
float *out = get_network_output(net);
2013-12-07 01:26:09 +04:00
int k = get_network_output_size(net);
return max_index(out, k);
}
float backward_network(network net, float *input, float *truth)
2013-12-07 01:26:09 +04:00
{
float error = calculate_error_network(net, truth);
int i;
float *prev_input;
float *prev_delta;
for(i = net.n-1; i >= 0; --i){
if(i == 0){
2013-11-13 22:50:38 +04:00
prev_input = input;
prev_delta = 0;
}else{
prev_input = get_network_output_layer(net, i-1);
prev_delta = get_network_delta_layer(net, i-1);
}
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
2014-05-10 02:14:52 +04:00
backward_convolutional_layer(layer, prev_delta);
}
else if(net.types[i] == MAXPOOL){
2013-12-03 04:41:40 +04:00
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
if(i != 0) backward_maxpool_layer(layer, prev_input, prev_delta);
}
2014-04-17 04:05:29 +04:00
else if(net.types[i] == NORMALIZATION){
normalization_layer layer = *(normalization_layer *)net.layers[i];
if(i != 0) backward_normalization_layer(layer, prev_input, prev_delta);
}
2013-12-03 04:41:40 +04:00
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
if(i != 0) backward_softmax_layer(layer, prev_input, prev_delta);
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
2014-05-10 02:14:52 +04:00
backward_connected_layer(layer, prev_input, prev_delta);
}
}
2014-01-28 11:16:56 +04:00
return error;
}
float train_network_datum(network net, float *x, float *y, float step, float momentum, float decay)
{
2014-05-10 02:14:52 +04:00
forward_network(net, x, 1);
2014-02-14 22:26:31 +04:00
//int class = get_predicted_class_network(net);
float error = backward_network(net, x, y);
update_network(net, step, momentum, decay);
//return (y[class]?1:0);
return error;
2013-12-07 01:26:09 +04:00
}
float train_network_sgd(network net, data d, int n, float step, float momentum,float decay)
2013-12-07 01:26:09 +04:00
{
2014-07-14 09:07:51 +04:00
int batch = net.batch;
float *X = calloc(batch*d.X.cols, sizeof(float));
float *y = calloc(batch*d.y.cols, sizeof(float));
int i,j;
float sum = 0;
2013-12-07 21:38:50 +04:00
for(i = 0; i < n; ++i){
2014-07-14 09:07:51 +04:00
for(j = 0; j < batch; ++j){
int index = rand()%d.X.rows;
memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float));
memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float));
}
float err = train_network_datum(net, X, y, step, momentum, decay);
sum += err;
//train_network_datum(net, X, y, step, momentum, decay);
/*
2014-02-14 22:26:31 +04:00
float *y = d.y.vals[index];
int class = get_predicted_class_network(net);
correct += (y[class]?1:0);
2014-07-14 09:07:51 +04:00
*/
/*
for(j = 0; j < d.y.cols*batch; ++j){
printf("%6.3f ", y[j]);
2014-03-13 08:57:34 +04:00
}
2014-07-14 09:07:51 +04:00
printf("\n");
for(j = 0; j < d.y.cols*batch; ++j){
printf("%6.3f ", get_network_output(net)[j]);
}
printf("\n");
printf("\n");
*/
2014-04-17 04:05:29 +04:00
2014-03-13 08:57:34 +04:00
2014-02-14 22:26:31 +04:00
//printf("%d %f %f\n", i,net.output[0], d.y.vals[index][0]);
2013-12-07 21:38:50 +04:00
//if((i+1)%10 == 0){
// printf("%d: %f\n", (i+1), (float)correct/(i+1));
2013-12-07 21:38:50 +04:00
//}
2013-12-07 01:26:09 +04:00
}
2014-03-13 08:57:34 +04:00
//printf("Accuracy: %f\n",(float) correct/n);
2014-07-14 09:07:51 +04:00
free(X);
free(y);
return (float)sum/(n*batch);
2013-12-07 01:26:09 +04:00
}
float train_network_batch(network net, data d, int n, float step, float momentum,float decay)
2014-01-23 23:24:37 +04:00
{
int i,j;
float sum = 0;
int batch = 2;
2014-01-23 23:24:37 +04:00
for(i = 0; i < n; ++i){
for(j = 0; j < batch; ++j){
int index = rand()%d.X.rows;
float *x = d.X.vals[index];
float *y = d.y.vals[index];
forward_network(net, x, 1);
sum += backward_network(net, x, y);
}
update_network(net, step, momentum, decay);
2014-01-23 23:24:37 +04:00
}
return (float)sum/(n*batch);
2014-01-23 23:24:37 +04:00
}
2013-12-07 01:26:09 +04:00
void train_network(network net, data d, float step, float momentum, float decay)
2013-12-07 01:26:09 +04:00
{
int i;
int correct = 0;
for(i = 0; i < d.X.rows; ++i){
correct += train_network_datum(net, d.X.vals[i], d.y.vals[i], step, momentum, decay);
2013-12-03 04:41:40 +04:00
if(i%100 == 0){
visualize_network(net);
2013-12-07 01:26:09 +04:00
cvWaitKey(10);
2013-12-03 04:41:40 +04:00
}
}
2013-12-03 04:41:40 +04:00
visualize_network(net);
cvWaitKey(100);
2014-03-13 08:57:34 +04:00
fprintf(stderr, "Accuracy: %f\n", (float)correct/d.X.rows);
}
2014-05-10 02:14:52 +04:00
int get_network_input_size_layer(network net, int i)
{
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
return layer.h*layer.w*layer.c;
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
return layer.h*layer.w*layer.c;
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.inputs;
}
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.inputs;
}
return 0;
}
int get_network_output_size_layer(network net, int i)
{
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
2013-11-13 22:50:38 +04:00
image output = get_convolutional_image(layer);
return output.h*output.w*output.c;
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
2013-11-13 22:50:38 +04:00
image output = get_maxpool_image(layer);
return output.h*output.w*output.c;
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.outputs;
}
2013-12-03 04:41:40 +04:00
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.inputs;
}
return 0;
}
2014-03-13 08:57:34 +04:00
int resize_network(network net, int h, int w, int c)
{
int i;
for (i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer *layer = (convolutional_layer *)net.layers[i];
resize_convolutional_layer(layer, h, w, c);
image output = get_convolutional_image(*layer);
h = output.h;
w = output.w;
c = output.c;
2014-04-17 04:05:29 +04:00
}else if(net.types[i] == MAXPOOL){
2014-03-13 08:57:34 +04:00
maxpool_layer *layer = (maxpool_layer *)net.layers[i];
resize_maxpool_layer(layer, h, w, c);
image output = get_maxpool_image(*layer);
h = output.h;
w = output.w;
c = output.c;
2014-04-17 04:05:29 +04:00
}else if(net.types[i] == NORMALIZATION){
normalization_layer *layer = (normalization_layer *)net.layers[i];
resize_normalization_layer(layer, h, w, c);
image output = get_normalization_image(*layer);
h = output.h;
w = output.w;
c = output.c;
}else{
2014-03-13 08:57:34 +04:00
error("Cannot resize this type of layer");
}
}
return 0;
}
2013-11-13 22:50:38 +04:00
int get_network_output_size(network net)
{
int i = net.n-1;
2013-11-13 22:50:38 +04:00
return get_network_output_size_layer(net, i);
}
2014-05-10 02:14:52 +04:00
int get_network_input_size(network net)
{
2014-07-14 09:07:51 +04:00
return get_network_input_size_layer(net, 0);
2014-05-10 02:14:52 +04:00
}
image get_network_image_layer(network net, int i)
{
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
2013-11-13 22:50:38 +04:00
return get_convolutional_image(layer);
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
2013-11-13 22:50:38 +04:00
return get_maxpool_image(layer);
}
2014-04-17 04:05:29 +04:00
else if(net.types[i] == NORMALIZATION){
normalization_layer layer = *(normalization_layer *)net.layers[i];
return get_normalization_image(layer);
}
2013-12-03 04:41:40 +04:00
return make_empty_image(0,0,0);
}
2013-11-04 23:11:01 +04:00
image get_network_image(network net)
{
int i;
for(i = net.n-1; i >= 0; --i){
2013-11-13 22:50:38 +04:00
image m = get_network_image_layer(net, i);
if(m.h != 0) return m;
}
2013-12-03 04:41:40 +04:00
return make_empty_image(0,0,0);
2013-11-13 22:50:38 +04:00
}
void visualize_network(network net)
{
image *prev = 0;
2013-11-13 22:50:38 +04:00
int i;
2013-12-03 04:41:40 +04:00
char buff[256];
for(i = 0; i < net.n; ++i){
sprintf(buff, "Layer %d", i);
2013-11-04 23:11:01 +04:00
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
prev = visualize_convolutional_layer(layer, buff, prev);
2014-04-17 04:05:29 +04:00
}
if(net.types[i] == NORMALIZATION){
normalization_layer layer = *(normalization_layer *)net.layers[i];
visualize_normalization_layer(layer, buff);
2013-11-04 23:11:01 +04:00
}
2013-11-13 22:50:38 +04:00
}
2013-11-04 23:11:01 +04:00
}
float *network_predict(network net, float *input)
2013-12-07 21:38:50 +04:00
{
2014-05-10 02:14:52 +04:00
forward_network(net, input, 0);
float *out = get_network_output(net);
2013-12-07 21:38:50 +04:00
return out;
}
matrix network_predict_data(network net, data test)
{
2014-07-14 09:07:51 +04:00
int i,j,b;
2013-12-07 21:38:50 +04:00
int k = get_network_output_size(net);
matrix pred = make_matrix(test.X.rows, k);
2014-07-14 09:07:51 +04:00
float *X = calloc(net.batch*test.X.rows, sizeof(float));
for(i = 0; i < test.X.rows; i += net.batch){
for(b = 0; b < net.batch; ++b){
if(i+b == test.X.rows) break;
memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
}
float *out = network_predict(net, X);
for(b = 0; b < net.batch; ++b){
if(i+b == test.X.rows) break;
for(j = 0; j < k; ++j){
pred.vals[i+b][j] = out[j+b*k];
}
2013-12-07 21:38:50 +04:00
}
}
2014-07-14 09:07:51 +04:00
free(X);
2013-12-07 21:38:50 +04:00
return pred;
}
2013-12-03 04:41:40 +04:00
void print_network(network net)
{
int i,j;
for(i = 0; i < net.n; ++i){
float *output = 0;
2013-12-03 04:41:40 +04:00
int n = 0;
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
output = layer.output;
image m = get_convolutional_image(layer);
n = m.h*m.w*m.c;
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
output = layer.output;
image m = get_maxpool_image(layer);
n = m.h*m.w*m.c;
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
output = layer.output;
n = layer.outputs;
}
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
output = layer.output;
n = layer.inputs;
}
float mean = mean_array(output, n);
float vari = variance_array(output, n);
2013-12-06 01:17:16 +04:00
fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari);
2013-12-03 04:41:40 +04:00
if(n > 100) n = 100;
2013-12-06 01:17:16 +04:00
for(j = 0; j < n; ++j) fprintf(stderr, "%f, ", output[j]);
if(n == 100)fprintf(stderr,".....\n");
fprintf(stderr, "\n");
2013-12-03 04:41:40 +04:00
}
}
2013-12-07 21:38:50 +04:00
float network_accuracy(network net, data d)
2013-12-07 01:26:09 +04:00
{
2013-12-07 21:38:50 +04:00
matrix guess = network_predict_data(net, d);
float acc = matrix_accuracy(d.y, guess);
2013-12-07 21:38:50 +04:00
free_matrix(guess);
return acc;
2013-12-07 01:26:09 +04:00
}