darknet/src/cnn.c

630 lines
20 KiB
C
Raw Normal View History

2013-11-04 23:11:01 +04:00
#include "connected_layer.h"
#include "convolutional_layer.h"
#include "maxpool_layer.h"
#include "network.h"
#include "image.h"
#include "parser.h"
2013-11-13 22:50:38 +04:00
#include "data.h"
#include "matrix.h"
2013-12-03 04:41:40 +04:00
#include "utils.h"
2014-01-25 02:49:02 +04:00
#include "mini_blas.h"
2014-12-12 00:15:26 +03:00
#include "matrix.h"
2014-12-07 11:41:26 +03:00
#include "server.h"
2013-11-04 23:11:01 +04:00
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
#define _GNU_SOURCE
#include <fenv.h>
2013-11-04 23:11:01 +04:00
void test_load()
{
image dog = load_image("dog.jpg", 300, 400);
show_image(dog, "Test Load");
show_image_layers(dog, "Test Load");
2013-11-04 23:11:01 +04:00
}
2013-11-13 22:50:38 +04:00
void test_parser()
{
network net = parse_network_cfg("cfg/trained_imagenet.cfg");
2014-11-19 00:51:04 +03:00
save_network(net, "cfg/trained_imagenet_smaller.cfg");
2013-11-13 22:50:38 +04:00
}
2014-12-12 00:15:26 +03:00
void draw_detection(image im, float *box, int side)
{
int j;
int r, c;
2014-12-17 02:34:10 +03:00
float amount[5] = {0,0,0,0,0};
2014-12-12 00:15:26 +03:00
for(r = 0; r < side*side; ++r){
for(j = 0; j < 5; ++j){
if(box[r*5] > amount[j]) {
amount[j] = box[r*5];
break;
}
}
}
float smallest = amount[0];
for(j = 1; j < 5; ++j) if(amount[j] < smallest) smallest = amount[j];
for(r = 0; r < side; ++r){
for(c = 0; c < side; ++c){
j = (r*side + c) * 5;
printf("Prob: %f\n", box[j]);
if(box[j] >= smallest){
int d = im.w/side;
int y = r*d+box[j+1]*d;
int x = c*d+box[j+2]*d;
int h = box[j+3]*256;
int w = box[j+4]*256;
printf("%f %f %f %f\n", box[j+1], box[j+2], box[j+3], box[j+4]);
printf("%d %d %d %d\n", x, y, w, h);
printf("%d %d %d %d\n", x-w/2, y-h/2, x+w/2, y+h/2);
draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2);
}
}
}
show_image(im, "box");
cvWaitKey(0);
}
void train_detection_net()
{
float avg_loss = 1;
//network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
network net = parse_network_cfg("cfg/detnet.cfg");
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
2014-12-17 02:34:10 +03:00
int imgs = 1024;
2014-12-12 00:15:26 +03:00
srand(time(0));
//srand(23410);
int i = 0;
2014-11-28 21:38:26 +03:00
list *plist = get_paths("/home/pjreddie/data/imagenet/horse.txt");
char **paths = (char **)list_to_array(plist);
printf("%d\n", plist->size);
clock_t time;
while(1){
i += 1;
time=clock();
2014-12-17 02:34:10 +03:00
data train = load_data_detection_jitter_random(imgs, paths, plist->size, 256, 256, 7, 7, 256);
2014-12-03 19:48:07 +03:00
/*
2014-12-12 00:15:26 +03:00
image im = float_to_image(224, 224, 3, train.X.vals[0]);
draw_detection(im, train.y.vals[0], 7);
2014-12-03 19:48:07 +03:00
*/
normalize_data_rows(train);
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
2014-12-17 02:34:10 +03:00
float loss = train_network(net, train);
avg_loss = avg_loss*.9 + loss*.1;
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs*net.batch);
if(i%10==0){
char buff[256];
2014-12-03 19:48:07 +03:00
sprintf(buff, "/home/pjreddie/imagenet_backup/detnet_%d.cfg", i);
save_network(net, buff);
}
2014-12-12 00:15:26 +03:00
free_data(train);
}
}
2014-12-07 11:41:26 +03:00
void train_imagenet_distributed(char *address)
{
float avg_loss = 1;
2014-12-08 07:16:21 +03:00
srand(time(0));
2014-12-12 00:15:26 +03:00
network net = parse_network_cfg("cfg/net.cfg");
set_learning_network(&net, 0, 1, 0);
2014-12-07 11:41:26 +03:00
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
2014-12-17 02:34:10 +03:00
int imgs = net.batch;
2014-12-07 11:41:26 +03:00
int i = 0;
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
list *plist = get_paths("/data/imagenet/cls.train.list");
char **paths = (char **)list_to_array(plist);
printf("%d\n", plist->size);
clock_t time;
2014-12-12 00:15:26 +03:00
data train, buffer;
2014-12-17 02:34:10 +03:00
pthread_t load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer);
2014-12-07 11:41:26 +03:00
while(1){
i += 1;
2014-12-12 00:15:26 +03:00
2014-12-07 11:41:26 +03:00
time=clock();
2014-12-12 00:15:26 +03:00
client_update(net, address);
printf("Updated: %lf seconds\n", sec(clock()-time));
time=clock();
pthread_join(load_thread, 0);
train = buffer;
2014-12-07 11:41:26 +03:00
normalize_data_rows(train);
2014-12-17 02:34:10 +03:00
load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer);
2014-12-07 11:41:26 +03:00
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
2014-12-12 00:15:26 +03:00
2014-12-17 02:34:10 +03:00
float loss = train_network(net, train);
2014-12-07 11:41:26 +03:00
avg_loss = avg_loss*.9 + loss*.1;
2014-12-17 02:34:10 +03:00
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
2014-12-07 11:41:26 +03:00
free_data(train);
}
}
2014-12-16 22:40:05 +03:00
void train_imagenet(char *cfgfile)
2014-10-25 22:57:26 +04:00
{
2014-11-06 01:49:58 +03:00
float avg_loss = 1;
//network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
2014-12-08 07:16:21 +03:00
srand(time(0));
2014-12-16 22:40:05 +03:00
network net = parse_network_cfg(cfgfile);
2014-12-18 21:47:33 +03:00
set_learning_network(&net, net.learning_rate, .5, .0005);
2014-10-25 22:57:26 +04:00
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
2014-12-17 02:34:10 +03:00
int imgs = 1024;
2014-12-18 21:47:33 +03:00
int i = 23030;
2014-10-25 22:57:26 +04:00
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
list *plist = get_paths("/data/imagenet/cls.train.list");
2014-10-25 22:57:26 +04:00
char **paths = (char **)list_to_array(plist);
printf("%d\n", plist->size);
2014-10-25 22:57:26 +04:00
clock_t time;
2014-12-12 00:15:26 +03:00
pthread_t load_thread;
data train;
data buffer;
2014-12-17 02:34:10 +03:00
load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer);
while(1){
i += 1;
2014-10-25 22:57:26 +04:00
time=clock();
2014-12-12 00:15:26 +03:00
pthread_join(load_thread, 0);
train = buffer;
2014-11-06 01:49:58 +03:00
normalize_data_rows(train);
2014-12-17 02:34:10 +03:00
load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer);
2014-10-25 22:57:26 +04:00
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
2014-12-17 02:34:10 +03:00
float loss = train_network(net, train);
2014-11-06 01:49:58 +03:00
avg_loss = avg_loss*.9 + loss*.1;
2014-12-17 02:34:10 +03:00
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
free_data(train);
2014-12-18 21:47:33 +03:00
if(i%100==0){
char buff[256];
2014-12-13 23:01:21 +03:00
sprintf(buff, "/home/pjreddie/imagenet_backup/net_%d.cfg", i);
save_network(net, buff);
}
}
2014-10-25 22:57:26 +04:00
}
2014-11-06 01:49:58 +03:00
void validate_imagenet(char *filename)
{
2014-12-13 23:01:21 +03:00
int i = 0;
network net = parse_network_cfg(filename);
srand(time(0));
2014-11-06 01:49:58 +03:00
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.val.labels.list");
list *plist = get_paths("/home/pjreddie/data/imagenet/cls.val.list");
char **paths = (char **)list_to_array(plist);
int m = plist->size;
free_list(plist);
2014-11-06 01:49:58 +03:00
clock_t time;
float avg_acc = 0;
2014-12-12 00:15:26 +03:00
float avg_top5 = 0;
2014-11-06 01:49:58 +03:00
int splits = 50;
2014-12-13 23:01:21 +03:00
int num = (i+1)*m/splits - i*m/splits;
2014-12-13 23:01:21 +03:00
data val, buffer;
2014-12-16 22:40:05 +03:00
pthread_t load_thread = load_data_thread(paths, num, 0, labels, 1000, 256, 256, &buffer);
2014-12-13 23:01:21 +03:00
for(i = 1; i <= splits; ++i){
2014-11-06 01:49:58 +03:00
time=clock();
2014-12-03 19:48:07 +03:00
2014-12-13 23:01:21 +03:00
pthread_join(load_thread, 0);
val = buffer;
2014-11-06 01:49:58 +03:00
normalize_data_rows(val);
2014-12-13 23:01:21 +03:00
num = (i+1)*m/splits - i*m/splits;
char **part = paths+(i*m/splits);
2014-12-16 22:40:05 +03:00
if(i != splits) load_thread = load_data_thread(part, num, 0, labels, 1000, 256, 256, &buffer);
2014-11-06 01:49:58 +03:00
printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time));
2014-12-13 23:01:21 +03:00
2014-11-06 01:49:58 +03:00
time=clock();
2014-12-17 02:34:10 +03:00
float *acc = network_accuracies(net, val);
2014-12-12 00:15:26 +03:00
avg_acc += acc[0];
avg_top5 += acc[1];
2014-12-13 23:01:21 +03:00
printf("%d: top1: %f, top5: %f, %lf seconds, %d images\n", i, avg_acc/i, avg_top5/i, sec(clock()-time), val.X.rows);
free_data(val);
}
}
2014-12-16 22:40:05 +03:00
void test_detection(char *cfgfile)
2014-11-28 21:38:26 +03:00
{
2014-12-16 22:40:05 +03:00
network net = parse_network_cfg(cfgfile);
set_batch_network(&net, 1);
2014-11-28 21:38:26 +03:00
srand(2222222);
clock_t time;
char filename[256];
while(1){
fgets(filename, 256, stdin);
2014-12-03 19:48:07 +03:00
strtok(filename, "\n");
2014-12-12 00:15:26 +03:00
image im = load_image_color(filename, 224, 224);
2014-11-28 21:38:26 +03:00
z_normalize_image(im);
printf("%d %d %d\n", im.h, im.w, im.c);
float *X = im.data;
time=clock();
float *predictions = network_predict(net, X);
printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time));
2014-12-12 00:15:26 +03:00
draw_detection(im, predictions, 7);
2014-11-28 21:38:26 +03:00
free_image(im);
}
}
2014-12-12 00:15:26 +03:00
void test_init(char *cfgfile)
{
network net = parse_network_cfg(cfgfile);
set_batch_network(&net, 1);
srand(2222222);
int i = 0;
char *filename = "data/test.jpg";
image im = load_image_color(filename, 224, 224);
z_normalize_image(im);
float *X = im.data;
forward_network(net, X, 0, 1);
for(i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
image output = get_convolutional_image(layer);
int size = output.h*output.w*output.c;
float v = variance_array(layer.output, size);
float m = mean_array(layer.output, size);
printf("%d: Convolutional, mean: %f, variance %f\n", i, m, v);
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
int size = layer.outputs;
float v = variance_array(layer.output, size);
float m = mean_array(layer.output, size);
printf("%d: Connected, mean: %f, variance %f\n", i, m, v);
}
}
free_image(im);
}
2014-10-25 22:57:26 +04:00
void test_imagenet()
{
network net = parse_network_cfg("cfg/imagenet_test.cfg");
2014-10-25 22:57:26 +04:00
//imgs=1;
srand(2222222);
int i = 0;
2014-10-25 22:57:26 +04:00
char **names = get_labels("cfg/shortnames.txt");
clock_t time;
char filename[256];
int indexes[10];
while(1){
2014-11-19 00:51:04 +03:00
fgets(filename, 256, stdin);
2014-12-03 19:48:07 +03:00
strtok(filename, "\n");
2014-10-25 22:57:26 +04:00
image im = load_image_color(filename, 256, 256);
2014-11-06 01:49:58 +03:00
z_normalize_image(im);
2014-10-25 22:57:26 +04:00
printf("%d %d %d\n", im.h, im.w, im.c);
float *X = im.data;
time=clock();
float *predictions = network_predict(net, X);
top_predictions(net, 10, indexes);
printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time));
2014-10-25 22:57:26 +04:00
for(i = 0; i < 10; ++i){
int index = indexes[i];
printf("%s: %f\n", names[index], predictions[index]);
}
free_image(im);
}
2014-10-25 22:57:26 +04:00
}
2014-11-06 01:49:58 +03:00
void test_visualize(char *filename)
{
2014-11-06 01:49:58 +03:00
network net = parse_network_cfg(filename);
visualize_network(net);
cvWaitKey(0);
2013-11-13 22:50:38 +04:00
}
2014-03-13 08:57:34 +04:00
void test_cifar10()
{
2014-08-11 23:52:07 +04:00
network net = parse_network_cfg("cfg/cifar10_part5.cfg");
data test = load_cifar10_data("data/cifar10/test_batch.bin");
clock_t start = clock(), end;
2014-08-11 23:52:07 +04:00
float test_acc = network_accuracy(net, test);
end = clock();
2014-08-11 23:52:07 +04:00
printf("%f in %f Sec\n", test_acc, (float)(end-start)/CLOCKS_PER_SEC);
visualize_network(net);
cvWaitKey(0);
}
void train_cifar10()
{
srand(555555);
2014-12-17 02:34:10 +03:00
network net = parse_network_cfg("cfg/cifar10.cfg");
2014-08-11 23:52:07 +04:00
data test = load_cifar10_data("data/cifar10/test_batch.bin");
2014-08-08 23:04:15 +04:00
int count = 0;
int iters = 10000/net.batch;
data train = load_all_cifar10();
while(++count <= 10000){
2014-12-17 02:34:10 +03:00
clock_t time = clock();
float loss = train_network_sgd(net, train, iters);
2014-08-08 23:04:15 +04:00
2014-08-11 23:52:07 +04:00
if(count%10 == 0){
2014-12-17 02:34:10 +03:00
float test_acc = network_accuracy(net, test);
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,sec(clock()-time));
2014-08-11 23:52:07 +04:00
char buff[256];
2014-12-17 02:34:10 +03:00
sprintf(buff, "unikitty/cifar10_%d.cfg", count);
2014-08-11 23:52:07 +04:00
save_network(net, buff);
}else{
2014-12-17 02:34:10 +03:00
printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, sec(clock()-time));
2014-08-11 23:52:07 +04:00
}
2014-08-08 23:04:15 +04:00
}
2014-12-17 02:34:10 +03:00
free_data(train);
2014-02-25 00:21:31 +04:00
}
2013-11-13 22:50:38 +04:00
2014-12-12 00:15:26 +03:00
void test_nist(char *path)
2013-12-03 04:41:40 +04:00
{
2014-08-08 23:04:15 +04:00
srand(222222);
2014-12-12 00:15:26 +03:00
network net = parse_network_cfg(path);
2014-08-11 23:52:07 +04:00
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
2014-12-12 00:15:26 +03:00
normalize_data_rows(test);
2014-08-11 23:52:07 +04:00
clock_t start = clock(), end;
2014-12-17 02:34:10 +03:00
float test_acc = network_accuracy(net, test);
2014-08-11 23:52:07 +04:00
end = clock();
printf("Accuracy: %f, Time: %lf seconds\n", test_acc,(float)(end-start)/CLOCKS_PER_SEC);
}
void train_nist()
{
srand(222222);
2014-12-18 21:47:33 +03:00
network net = parse_network_cfg("cfg/nist.cfg.old");
2014-08-08 23:04:15 +04:00
data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
2014-12-08 10:59:45 +03:00
normalize_data_rows(train);
normalize_data_rows(test);
2014-08-08 23:04:15 +04:00
int count = 0;
2014-12-12 00:15:26 +03:00
int iters = 60000/net.batch + 1;
2014-12-18 21:47:33 +03:00
while(++count <= 200){
2014-08-08 23:04:15 +04:00
clock_t start = clock(), end;
2014-12-17 02:34:10 +03:00
float loss = train_network_sgd(net, train, iters);
2014-08-08 23:04:15 +04:00
end = clock();
2014-12-12 00:15:26 +03:00
float test_acc = 0;
2014-12-17 02:34:10 +03:00
if(count%1 == 0) test_acc = network_accuracy(net, test);
2014-11-19 00:51:04 +03:00
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC);
2014-08-08 23:04:15 +04:00
}
2014-12-18 21:47:33 +03:00
save_network(net, "~/nist_conv.cfg");
2013-12-03 04:41:40 +04:00
}
2014-12-08 22:48:57 +03:00
void train_nist_distributed(char *address)
{
srand(time(0));
network net = parse_network_cfg("cfg/nist.client");
data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
//data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
normalize_data_rows(train);
//normalize_data_rows(test);
int count = 0;
int iters = 50000/net.batch;
iters = 1000/net.batch + 1;
while(++count <= 2000){
clock_t start = clock(), end;
2014-12-17 02:34:10 +03:00
float loss = train_network_sgd(net, train, iters);
2014-12-08 22:48:57 +03:00
client_update(net, address);
end = clock();
//float test_acc = network_accuracy_gpu(net, test);
//float test_acc = 0;
printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC);
}
}
2013-12-07 21:38:50 +04:00
void test_ensemble()
{
2014-08-08 23:04:15 +04:00
int i;
srand(888888);
data d = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
normalize_data_rows(d);
data test = load_categorical_data_csv("mnist/mnist_test.csv", 0,10);
normalize_data_rows(test);
data train = d;
// data *split = split_data(d, 1, 10);
// data train = split[0];
// data test = split[1];
matrix prediction = make_matrix(test.y.rows, test.y.cols);
int n = 30;
for(i = 0; i < n; ++i){
int count = 0;
float lr = .0005;
float momentum = .9;
float decay = .01;
network net = parse_network_cfg("nist.cfg");
while(++count <= 15){
float acc = train_network_sgd(net, train, train.X.rows);
printf("Training Accuracy: %lf Learning Rate: %f Momentum: %f Decay: %f\n", acc, lr, momentum, decay );
lr /= 2;
}
matrix partial = network_predict_data(net, test);
2014-12-12 00:15:26 +03:00
float acc = matrix_topk_accuracy(test.y, partial,1);
2014-08-08 23:04:15 +04:00
printf("Model Accuracy: %lf\n", acc);
matrix_add_matrix(partial, prediction);
2014-12-12 00:15:26 +03:00
acc = matrix_topk_accuracy(test.y, prediction,1);
2014-08-08 23:04:15 +04:00
printf("Current Ensemble Accuracy: %lf\n", acc);
free_matrix(partial);
}
2014-12-12 00:15:26 +03:00
float acc = matrix_topk_accuracy(test.y, prediction,1);
2014-08-08 23:04:15 +04:00
printf("Full Ensemble Accuracy: %lf\n", acc);
2013-12-07 21:38:50 +04:00
}
void visualize_cat()
2014-02-18 11:32:18 +04:00
{
network net = parse_network_cfg("cfg/voc_imagenet.cfg");
image im = load_image("data/cat.png", 0, 0);
printf("Processing %dx%d image\n", im.h, im.w);
2014-08-08 23:04:15 +04:00
resize_network(net, im.h, im.w, im.c);
2014-10-13 11:29:01 +04:00
forward_network(net, im.data, 0, 0);
visualize_network(net);
cvWaitKey(0);
2014-02-18 11:32:18 +04:00
}
void test_gpu_net()
2014-02-18 11:32:18 +04:00
{
srand(222222);
network net = parse_network_cfg("cfg/nist.cfg");
data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
translate_data_rows(train, -144);
translate_data_rows(test, -144);
int count = 0;
int iters = 1000/net.batch;
2014-12-17 02:34:10 +03:00
while(++count <= 5){
clock_t start = clock(), end;
float loss = train_network_sgd(net, train, iters);
end = clock();
float test_acc = network_accuracy(net, test);
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
}
2014-12-17 02:34:10 +03:00
gpu_index = -1;
count = 0;
srand(222222);
net = parse_network_cfg("cfg/nist.cfg");
while(++count <= 5){
clock_t start = clock(), end;
2014-12-17 02:34:10 +03:00
float loss = train_network_sgd(net, train, iters);
end = clock();
float test_acc = network_accuracy(net, test);
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
}
}
2014-08-08 23:04:15 +04:00
2014-12-04 10:20:29 +03:00
void test_correct_alexnet()
{
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
list *plist = get_paths("/data/imagenet/cls.train.list");
char **paths = (char **)list_to_array(plist);
printf("%d\n", plist->size);
clock_t time;
int count = 0;
2014-12-16 22:40:05 +03:00
network net;
2014-12-17 02:34:10 +03:00
int imgs = net.batch;
2014-12-16 22:40:05 +03:00
count = 0;
srand(222222);
net = parse_network_cfg("cfg/net.cfg");
2014-12-04 10:20:29 +03:00
while(++count <= 5){
time=clock();
2014-12-17 02:34:10 +03:00
data train = load_data(paths, imgs, plist->size, labels, 1000, 256, 256);
2014-12-04 10:20:29 +03:00
normalize_data_rows(train);
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
2014-12-17 02:34:10 +03:00
float loss = train_network(net, train);
2014-12-04 10:20:29 +03:00
printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch);
free_data(train);
}
2014-12-17 02:34:10 +03:00
gpu_index = -1;
2014-12-04 10:20:29 +03:00
count = 0;
srand(222222);
2014-12-13 23:01:21 +03:00
net = parse_network_cfg("cfg/net.cfg");
2014-12-16 22:40:05 +03:00
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
2014-12-04 10:20:29 +03:00
while(++count <= 5){
time=clock();
2014-12-17 02:34:10 +03:00
data train = load_data(paths, imgs, plist->size, labels, 1000, 256,256);
2014-12-04 10:20:29 +03:00
normalize_data_rows(train);
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
2014-12-17 02:34:10 +03:00
float loss = train_network(net, train);
2014-12-04 10:20:29 +03:00
printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch);
free_data(train);
}
}
2014-12-07 11:41:26 +03:00
void run_server()
2014-12-03 19:48:07 +03:00
{
2014-12-08 07:16:21 +03:00
srand(time(0));
2014-12-12 00:15:26 +03:00
network net = parse_network_cfg("cfg/net.cfg");
set_batch_network(&net, 1);
2014-12-04 10:20:29 +03:00
server_update(net);
2014-12-03 19:48:07 +03:00
}
2014-12-17 02:34:10 +03:00
2014-12-03 19:48:07 +03:00
void test_client()
{
2014-12-07 11:41:26 +03:00
network net = parse_network_cfg("cfg/alexnet.client");
clock_t time=clock();
client_update(net, "localhost");
printf("1\n");
client_update(net, "localhost");
printf("2\n");
client_update(net, "localhost");
printf("3\n");
printf("Transfered: %lf seconds\n", sec(clock()-time));
2014-12-03 19:48:07 +03:00
}
2014-12-17 02:34:10 +03:00
void del_arg(int argc, char **argv, int index)
{
int i;
for(i = index; i < argc-1; ++i) argv[i] = argv[i+1];
}
int find_arg(int argc, char* argv[], char *arg)
2014-12-08 22:48:57 +03:00
{
int i;
2014-12-17 02:41:36 +03:00
for(i = 0; i < argc; ++i) if(0==strcmp(argv[i], arg)) {
2014-12-17 02:34:10 +03:00
del_arg(argc, argv, i);
return 1;
}
2014-12-08 22:48:57 +03:00
return 0;
}
2014-12-17 02:34:10 +03:00
int find_int_arg(int argc, char **argv, char *arg, int def)
{
int i;
for(i = 0; i < argc-1; ++i){
if(0==strcmp(argv[i], arg)){
def = atoi(argv[i+1]);
del_arg(argc, argv, i);
del_arg(argc, argv, i);
break;
}
}
return def;
}
int main(int argc, char **argv)
{
if(argc < 2){
fprintf(stderr, "usage: %s <function>\n", argv[0]);
return 0;
2014-08-08 23:04:15 +04:00
}
2014-12-17 02:34:10 +03:00
gpu_index = find_int_arg(argc, argv, "-i", 0);
if(find_arg(argc, argv, "-nogpu")) gpu_index = -1;
#ifndef GPU
gpu_index = -1;
#else
if(gpu_index >= 0){
cl_setup();
}
2014-12-12 00:15:26 +03:00
#endif
2014-12-17 02:34:10 +03:00
2014-12-16 22:40:05 +03:00
if(0==strcmp(argv[1], "detection")) train_detection_net();
else if(0==strcmp(argv[1], "nist")) train_nist();
2014-12-16 22:40:05 +03:00
else if(0==strcmp(argv[1], "cifar")) train_cifar10();
2014-12-04 10:20:29 +03:00
else if(0==strcmp(argv[1], "test_correct")) test_correct_alexnet();
else if(0==strcmp(argv[1], "test")) test_imagenet();
2014-12-07 11:41:26 +03:00
else if(0==strcmp(argv[1], "server")) run_server();
2014-12-17 02:34:10 +03:00
#ifdef GPU
else if(0==strcmp(argv[1], "test_gpu")) test_gpu_blas();
#endif
2014-12-17 02:34:10 +03:00
2014-12-08 10:59:45 +03:00
else if(argc < 3){
2014-12-16 22:40:05 +03:00
fprintf(stderr, "usage: %s <function> <filename>\n", argv[0]);
2014-12-08 10:59:45 +03:00
return 0;
}
2014-12-16 22:40:05 +03:00
else if(0==strcmp(argv[1], "train")) train_imagenet(argv[2]);
2014-12-12 00:15:26 +03:00
else if(0==strcmp(argv[1], "client")) train_imagenet_distributed(argv[2]);
2014-12-16 22:40:05 +03:00
else if(0==strcmp(argv[1], "detect")) test_detection(argv[2]);
2014-12-12 00:15:26 +03:00
else if(0==strcmp(argv[1], "init")) test_init(argv[2]);
2014-12-08 10:59:45 +03:00
else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]);
else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2]);
2014-12-12 00:15:26 +03:00
else if(0==strcmp(argv[1], "testnist")) test_nist(argv[2]);
fprintf(stderr, "Success!\n");
return 0;
}