2013-11-04 23:11:01 +04:00
|
|
|
#include "connected_layer.h"
|
2013-12-03 04:41:40 +04:00
|
|
|
#include "utils.h"
|
2014-01-25 02:49:02 +04:00
|
|
|
#include "mini_blas.h"
|
2013-11-04 23:11:01 +04:00
|
|
|
|
2013-11-06 22:37:37 +04:00
|
|
|
#include <math.h>
|
2013-11-13 22:50:38 +04:00
|
|
|
#include <stdio.h>
|
2013-11-04 23:11:01 +04:00
|
|
|
#include <stdlib.h>
|
|
|
|
#include <string.h>
|
|
|
|
|
2014-08-08 23:04:15 +04:00
|
|
|
connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, float learning_rate, float momentum, float decay)
|
2013-11-04 23:11:01 +04:00
|
|
|
{
|
|
|
|
int i;
|
2013-11-07 04:09:41 +04:00
|
|
|
connected_layer *layer = calloc(1, sizeof(connected_layer));
|
2014-08-08 23:04:15 +04:00
|
|
|
|
|
|
|
layer->learning_rate = learning_rate;
|
|
|
|
layer->momentum = momentum;
|
|
|
|
layer->decay = decay;
|
|
|
|
|
2013-11-07 04:09:41 +04:00
|
|
|
layer->inputs = inputs;
|
|
|
|
layer->outputs = outputs;
|
2014-03-13 08:57:34 +04:00
|
|
|
layer->batch=batch;
|
2013-11-04 23:11:01 +04:00
|
|
|
|
2014-03-13 08:57:34 +04:00
|
|
|
layer->output = calloc(batch*outputs, sizeof(float*));
|
|
|
|
layer->delta = calloc(batch*outputs, sizeof(float*));
|
2013-11-04 23:11:01 +04:00
|
|
|
|
2014-01-29 04:28:42 +04:00
|
|
|
layer->weight_updates = calloc(inputs*outputs, sizeof(float));
|
2014-10-13 11:29:01 +04:00
|
|
|
//layer->weight_adapt = calloc(inputs*outputs, sizeof(float));
|
2014-01-29 04:28:42 +04:00
|
|
|
layer->weights = calloc(inputs*outputs, sizeof(float));
|
2014-02-14 22:26:31 +04:00
|
|
|
float scale = 1./inputs;
|
2014-11-06 01:49:58 +03:00
|
|
|
scale = .01;
|
2013-11-04 23:11:01 +04:00
|
|
|
for(i = 0; i < inputs*outputs; ++i)
|
2014-08-09 19:16:37 +04:00
|
|
|
layer->weights[i] = scale*2*(rand_uniform()-.5);
|
2013-11-04 23:11:01 +04:00
|
|
|
|
2014-01-29 04:28:42 +04:00
|
|
|
layer->bias_updates = calloc(outputs, sizeof(float));
|
2014-10-13 11:29:01 +04:00
|
|
|
//layer->bias_adapt = calloc(outputs, sizeof(float));
|
2014-01-29 04:28:42 +04:00
|
|
|
layer->biases = calloc(outputs, sizeof(float));
|
2014-10-13 11:29:01 +04:00
|
|
|
for(i = 0; i < outputs; ++i){
|
2013-12-03 04:41:40 +04:00
|
|
|
//layer->biases[i] = rand_normal()*scale + scale;
|
2014-02-14 22:26:31 +04:00
|
|
|
layer->biases[i] = 1;
|
2014-10-17 02:17:23 +04:00
|
|
|
}
|
2013-11-04 23:11:01 +04:00
|
|
|
|
2014-10-13 11:29:01 +04:00
|
|
|
#ifdef GPU
|
2014-10-17 02:17:23 +04:00
|
|
|
layer->weights_cl = cl_make_array(layer->weights, inputs*outputs);
|
|
|
|
layer->biases_cl = cl_make_array(layer->biases, outputs);
|
|
|
|
|
|
|
|
layer->weight_updates_cl = cl_make_array(layer->weight_updates, inputs*outputs);
|
|
|
|
layer->bias_updates_cl = cl_make_array(layer->bias_updates, outputs);
|
|
|
|
|
|
|
|
layer->output_cl = cl_make_array(layer->output, outputs*batch);
|
|
|
|
layer->delta_cl = cl_make_array(layer->delta, outputs*batch);
|
2014-10-13 11:29:01 +04:00
|
|
|
#endif
|
2013-12-03 04:41:40 +04:00
|
|
|
layer->activation = activation;
|
2014-11-19 00:51:04 +03:00
|
|
|
fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs);
|
2013-11-04 23:11:01 +04:00
|
|
|
return layer;
|
|
|
|
}
|
|
|
|
|
2014-08-08 23:04:15 +04:00
|
|
|
void update_connected_layer(connected_layer layer)
|
2013-11-04 23:11:01 +04:00
|
|
|
{
|
2014-10-14 09:31:48 +04:00
|
|
|
axpy_cpu(layer.outputs, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1);
|
|
|
|
scal_cpu(layer.outputs, layer.momentum, layer.bias_updates, 1);
|
|
|
|
|
|
|
|
scal_cpu(layer.inputs*layer.outputs, 1.-layer.learning_rate*layer.decay, layer.weights, 1);
|
|
|
|
axpy_cpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates, 1, layer.weights, 1);
|
|
|
|
scal_cpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates, 1);
|
2013-11-04 23:11:01 +04:00
|
|
|
}
|
|
|
|
|
2014-08-08 23:04:15 +04:00
|
|
|
void forward_connected_layer(connected_layer layer, float *input)
|
2013-11-04 23:11:01 +04:00
|
|
|
{
|
2014-07-14 09:07:51 +04:00
|
|
|
int i;
|
|
|
|
for(i = 0; i < layer.batch; ++i){
|
2014-10-14 09:31:48 +04:00
|
|
|
copy_cpu(layer.outputs, layer.biases, 1, layer.output + i*layer.outputs, 1);
|
2014-07-14 09:07:51 +04:00
|
|
|
}
|
2014-03-13 08:57:34 +04:00
|
|
|
int m = layer.batch;
|
2014-01-25 02:49:02 +04:00
|
|
|
int k = layer.inputs;
|
|
|
|
int n = layer.outputs;
|
2014-01-29 04:28:42 +04:00
|
|
|
float *a = input;
|
|
|
|
float *b = layer.weights;
|
|
|
|
float *c = layer.output;
|
2014-01-25 02:49:02 +04:00
|
|
|
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
|
2014-08-08 23:04:15 +04:00
|
|
|
activate_array(layer.output, layer.outputs*layer.batch, layer.activation);
|
2013-11-04 23:11:01 +04:00
|
|
|
}
|
|
|
|
|
2014-05-10 02:14:52 +04:00
|
|
|
void backward_connected_layer(connected_layer layer, float *input, float *delta)
|
2013-11-04 23:11:01 +04:00
|
|
|
{
|
2014-01-25 02:49:02 +04:00
|
|
|
int i;
|
2014-10-14 09:31:48 +04:00
|
|
|
gradient_array(layer.output, layer.outputs*layer.batch, layer.activation, layer.delta);
|
2014-10-17 02:17:23 +04:00
|
|
|
for(i = 0; i < layer.batch; ++i){
|
|
|
|
axpy_cpu(layer.outputs, 1, layer.delta + i*layer.outputs, 1, layer.bias_updates, 1);
|
2013-11-04 23:11:01 +04:00
|
|
|
}
|
2014-01-25 02:49:02 +04:00
|
|
|
int m = layer.inputs;
|
2014-03-13 08:57:34 +04:00
|
|
|
int k = layer.batch;
|
2014-01-25 02:49:02 +04:00
|
|
|
int n = layer.outputs;
|
2014-01-29 04:28:42 +04:00
|
|
|
float *a = input;
|
|
|
|
float *b = layer.delta;
|
|
|
|
float *c = layer.weight_updates;
|
2014-07-17 20:05:07 +04:00
|
|
|
gemm(1,0,m,n,k,1,a,m,b,n,1,c,n);
|
2013-11-04 23:11:01 +04:00
|
|
|
|
2014-07-14 09:07:51 +04:00
|
|
|
m = layer.batch;
|
2014-05-10 02:14:52 +04:00
|
|
|
k = layer.outputs;
|
2014-07-14 09:07:51 +04:00
|
|
|
n = layer.inputs;
|
2014-01-25 02:49:02 +04:00
|
|
|
|
2014-07-14 09:07:51 +04:00
|
|
|
a = layer.delta;
|
|
|
|
b = layer.weights;
|
2014-05-10 02:14:52 +04:00
|
|
|
c = delta;
|
2014-01-25 02:49:02 +04:00
|
|
|
|
2014-07-14 09:07:51 +04:00
|
|
|
if(c) gemm(0,1,m,n,k,1,a,k,b,k,0,c,n);
|
2013-11-04 23:11:01 +04:00
|
|
|
}
|
|
|
|
|
2014-10-17 02:17:23 +04:00
|
|
|
#ifdef GPU
|
|
|
|
|
2014-10-22 01:49:18 +04:00
|
|
|
void pull_connected_layer(connected_layer layer)
|
|
|
|
{
|
|
|
|
cl_read_array(layer.weights_cl, layer.weights, layer.inputs*layer.outputs);
|
|
|
|
cl_read_array(layer.biases_cl, layer.biases, layer.outputs);
|
2014-12-07 11:41:26 +03:00
|
|
|
cl_read_array(layer.weight_updates_cl, layer.weight_updates, layer.inputs*layer.outputs);
|
|
|
|
cl_read_array(layer.bias_updates_cl, layer.bias_updates, layer.outputs);
|
2014-10-25 22:57:26 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
void push_connected_layer(connected_layer layer)
|
|
|
|
{
|
|
|
|
cl_write_array(layer.weights_cl, layer.weights, layer.inputs*layer.outputs);
|
|
|
|
cl_write_array(layer.biases_cl, layer.biases, layer.outputs);
|
2014-12-07 11:41:26 +03:00
|
|
|
cl_write_array(layer.weight_updates_cl, layer.weight_updates, layer.inputs*layer.outputs);
|
|
|
|
cl_write_array(layer.bias_updates_cl, layer.bias_updates, layer.outputs);
|
2014-10-22 01:49:18 +04:00
|
|
|
}
|
|
|
|
|
2014-10-17 02:17:23 +04:00
|
|
|
void update_connected_layer_gpu(connected_layer layer)
|
|
|
|
{
|
|
|
|
axpy_ongpu(layer.outputs, layer.learning_rate, layer.bias_updates_cl, 1, layer.biases_cl, 1);
|
|
|
|
scal_ongpu(layer.outputs, layer.momentum, layer.bias_updates_cl, 1);
|
|
|
|
|
|
|
|
scal_ongpu(layer.inputs*layer.outputs, 1.-layer.learning_rate*layer.decay, layer.weights_cl, 1);
|
|
|
|
axpy_ongpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates_cl, 1, layer.weights_cl, 1);
|
|
|
|
scal_ongpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates_cl, 1);
|
2014-10-22 01:49:18 +04:00
|
|
|
pull_connected_layer(layer);
|
2014-10-17 02:17:23 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
void forward_connected_layer_gpu(connected_layer layer, cl_mem input)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
for(i = 0; i < layer.batch; ++i){
|
2014-10-30 09:26:41 +03:00
|
|
|
copy_ongpu_offset(layer.outputs, layer.biases_cl, 0, 1, layer.output_cl, i*layer.outputs, 1);
|
2014-10-17 02:17:23 +04:00
|
|
|
}
|
|
|
|
int m = layer.batch;
|
|
|
|
int k = layer.inputs;
|
|
|
|
int n = layer.outputs;
|
|
|
|
cl_mem a = input;
|
|
|
|
cl_mem b = layer.weights_cl;
|
|
|
|
cl_mem c = layer.output_cl;
|
|
|
|
gemm_ongpu(0,0,m,n,k,1,a,k,b,n,1,c,n);
|
|
|
|
activate_array_ongpu(layer.output_cl, layer.outputs*layer.batch, layer.activation);
|
|
|
|
}
|
|
|
|
|
|
|
|
void backward_connected_layer_gpu(connected_layer layer, cl_mem input, cl_mem delta)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
gradient_array_ongpu(layer.output_cl, layer.outputs*layer.batch, layer.activation, layer.delta_cl);
|
|
|
|
for(i = 0; i < layer.batch; ++i){
|
2014-10-30 09:26:41 +03:00
|
|
|
axpy_ongpu_offset(layer.outputs, 1, layer.delta_cl, i*layer.outputs, 1, layer.bias_updates_cl, 0, 1);
|
2014-10-17 02:17:23 +04:00
|
|
|
}
|
|
|
|
int m = layer.inputs;
|
|
|
|
int k = layer.batch;
|
|
|
|
int n = layer.outputs;
|
|
|
|
cl_mem a = input;
|
|
|
|
cl_mem b = layer.delta_cl;
|
|
|
|
cl_mem c = layer.weight_updates_cl;
|
|
|
|
gemm_ongpu(1,0,m,n,k,1,a,m,b,n,1,c,n);
|
|
|
|
|
|
|
|
m = layer.batch;
|
|
|
|
k = layer.outputs;
|
|
|
|
n = layer.inputs;
|
|
|
|
|
|
|
|
a = layer.delta_cl;
|
|
|
|
b = layer.weights_cl;
|
|
|
|
c = delta;
|
|
|
|
|
|
|
|
if(c) gemm_ongpu(0,1,m,n,k,1,a,k,b,k,0,c,n);
|
|
|
|
}
|
|
|
|
#endif
|