2013-11-13 22:50:38 +04:00
|
|
|
#include <stdio.h>
|
2014-10-22 01:49:18 +04:00
|
|
|
#include <time.h>
|
2013-11-04 23:11:01 +04:00
|
|
|
#include "network.h"
|
|
|
|
#include "image.h"
|
2013-11-13 22:50:38 +04:00
|
|
|
#include "data.h"
|
2013-12-03 04:41:40 +04:00
|
|
|
#include "utils.h"
|
2013-11-04 23:11:01 +04:00
|
|
|
|
2014-08-11 23:52:07 +04:00
|
|
|
#include "crop_layer.h"
|
2013-11-04 23:11:01 +04:00
|
|
|
#include "connected_layer.h"
|
|
|
|
#include "convolutional_layer.h"
|
2015-02-11 06:41:03 +03:00
|
|
|
#include "deconvolutional_layer.h"
|
2013-11-04 23:11:01 +04:00
|
|
|
#include "maxpool_layer.h"
|
2014-10-13 11:29:01 +04:00
|
|
|
#include "cost_layer.h"
|
2014-04-17 04:05:29 +04:00
|
|
|
#include "normalization_layer.h"
|
2014-10-13 11:29:01 +04:00
|
|
|
#include "freeweight_layer.h"
|
2013-12-03 04:41:40 +04:00
|
|
|
#include "softmax_layer.h"
|
2014-08-08 23:04:15 +04:00
|
|
|
#include "dropout_layer.h"
|
2013-11-04 23:11:01 +04:00
|
|
|
|
2015-01-14 23:18:57 +03:00
|
|
|
char *get_layer_string(LAYER_TYPE a)
|
|
|
|
{
|
|
|
|
switch(a){
|
|
|
|
case CONVOLUTIONAL:
|
|
|
|
return "convolutional";
|
2015-02-11 06:41:03 +03:00
|
|
|
case DECONVOLUTIONAL:
|
|
|
|
return "deconvolutional";
|
2015-01-14 23:18:57 +03:00
|
|
|
case CONNECTED:
|
|
|
|
return "connected";
|
|
|
|
case MAXPOOL:
|
|
|
|
return "maxpool";
|
|
|
|
case SOFTMAX:
|
|
|
|
return "softmax";
|
|
|
|
case NORMALIZATION:
|
|
|
|
return "normalization";
|
|
|
|
case DROPOUT:
|
|
|
|
return "dropout";
|
|
|
|
case FREEWEIGHT:
|
|
|
|
return "freeweight";
|
|
|
|
case CROP:
|
|
|
|
return "crop";
|
|
|
|
case COST:
|
|
|
|
return "cost";
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return "none";
|
|
|
|
}
|
|
|
|
|
2014-03-13 08:57:34 +04:00
|
|
|
network make_network(int n, int batch)
|
2013-11-07 04:09:41 +04:00
|
|
|
{
|
|
|
|
network net;
|
|
|
|
net.n = n;
|
2014-03-13 08:57:34 +04:00
|
|
|
net.batch = batch;
|
2013-11-07 04:09:41 +04:00
|
|
|
net.layers = calloc(net.n, sizeof(void *));
|
|
|
|
net.types = calloc(net.n, sizeof(LAYER_TYPE));
|
2013-12-07 01:26:09 +04:00
|
|
|
net.outputs = 0;
|
|
|
|
net.output = 0;
|
2015-01-23 03:38:24 +03:00
|
|
|
net.seen = 0;
|
2014-05-10 02:14:52 +04:00
|
|
|
#ifdef GPU
|
2015-01-23 03:38:24 +03:00
|
|
|
net.input_gpu = calloc(1, sizeof(float *));
|
|
|
|
net.truth_gpu = calloc(1, sizeof(float *));
|
2014-05-10 02:14:52 +04:00
|
|
|
#endif
|
2013-11-07 04:09:41 +04:00
|
|
|
return net;
|
|
|
|
}
|
|
|
|
|
2014-10-13 11:29:01 +04:00
|
|
|
void forward_network(network net, float *input, float *truth, int train)
|
2014-07-14 09:07:51 +04:00
|
|
|
{
|
|
|
|
int i;
|
|
|
|
for(i = 0; i < net.n; ++i){
|
|
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
2013-11-13 22:50:38 +04:00
|
|
|
forward_convolutional_layer(layer, input);
|
2013-11-04 23:11:01 +04:00
|
|
|
input = layer.output;
|
|
|
|
}
|
2015-02-11 06:41:03 +03:00
|
|
|
else if(net.types[i] == DECONVOLUTIONAL){
|
|
|
|
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
|
|
|
|
forward_deconvolutional_layer(layer, input);
|
|
|
|
input = layer.output;
|
|
|
|
}
|
2013-11-04 23:11:01 +04:00
|
|
|
else if(net.types[i] == CONNECTED){
|
|
|
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
2014-08-08 23:04:15 +04:00
|
|
|
forward_connected_layer(layer, input);
|
2013-11-13 22:50:38 +04:00
|
|
|
input = layer.output;
|
2013-11-04 23:11:01 +04:00
|
|
|
}
|
2014-08-11 23:52:07 +04:00
|
|
|
else if(net.types[i] == CROP){
|
|
|
|
crop_layer layer = *(crop_layer *)net.layers[i];
|
2015-01-31 09:05:23 +03:00
|
|
|
forward_crop_layer(layer, train, input);
|
2014-08-11 23:52:07 +04:00
|
|
|
input = layer.output;
|
|
|
|
}
|
2014-10-13 11:29:01 +04:00
|
|
|
else if(net.types[i] == COST){
|
|
|
|
cost_layer layer = *(cost_layer *)net.layers[i];
|
|
|
|
forward_cost_layer(layer, input, truth);
|
|
|
|
}
|
2013-12-03 04:41:40 +04:00
|
|
|
else if(net.types[i] == SOFTMAX){
|
|
|
|
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
|
|
|
forward_softmax_layer(layer, input);
|
|
|
|
input = layer.output;
|
|
|
|
}
|
2013-11-04 23:11:01 +04:00
|
|
|
else if(net.types[i] == MAXPOOL){
|
|
|
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
2013-11-13 22:50:38 +04:00
|
|
|
forward_maxpool_layer(layer, input);
|
2013-11-04 23:11:01 +04:00
|
|
|
input = layer.output;
|
|
|
|
}
|
2014-04-17 04:05:29 +04:00
|
|
|
else if(net.types[i] == NORMALIZATION){
|
|
|
|
normalization_layer layer = *(normalization_layer *)net.layers[i];
|
|
|
|
forward_normalization_layer(layer, input);
|
|
|
|
input = layer.output;
|
|
|
|
}
|
2014-08-08 23:04:15 +04:00
|
|
|
else if(net.types[i] == DROPOUT){
|
|
|
|
if(!train) continue;
|
|
|
|
dropout_layer layer = *(dropout_layer *)net.layers[i];
|
|
|
|
forward_dropout_layer(layer, input);
|
2014-12-19 02:46:45 +03:00
|
|
|
input = layer.output;
|
2014-08-08 23:04:15 +04:00
|
|
|
}
|
2014-10-13 11:29:01 +04:00
|
|
|
else if(net.types[i] == FREEWEIGHT){
|
|
|
|
if(!train) continue;
|
2015-01-23 03:38:24 +03:00
|
|
|
//freeweight_layer layer = *(freeweight_layer *)net.layers[i];
|
|
|
|
//forward_freeweight_layer(layer, input);
|
2014-10-13 11:29:01 +04:00
|
|
|
}
|
2015-01-23 03:38:24 +03:00
|
|
|
//char buff[256];
|
|
|
|
//sprintf(buff, "layer %d", i);
|
|
|
|
//cuda_compare(get_network_output_gpu_layer(net, i), input, get_network_output_size_layer(net, i)*net.batch, buff);
|
2013-11-04 23:11:01 +04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-08-08 23:04:15 +04:00
|
|
|
void update_network(network net)
|
2013-11-06 22:37:37 +04:00
|
|
|
{
|
|
|
|
int i;
|
|
|
|
for(i = 0; i < net.n; ++i){
|
|
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
2014-08-08 23:04:15 +04:00
|
|
|
update_convolutional_layer(layer);
|
2013-11-06 22:37:37 +04:00
|
|
|
}
|
2015-02-11 06:41:03 +03:00
|
|
|
else if(net.types[i] == DECONVOLUTIONAL){
|
|
|
|
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
|
|
|
|
update_deconvolutional_layer(layer);
|
2014-04-17 04:05:29 +04:00
|
|
|
}
|
2013-11-06 22:37:37 +04:00
|
|
|
else if(net.types[i] == CONNECTED){
|
|
|
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
2014-12-28 20:42:35 +03:00
|
|
|
update_connected_layer(layer);
|
2013-11-06 22:37:37 +04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-01-29 04:28:42 +04:00
|
|
|
float *get_network_output_layer(network net, int i)
|
2013-11-13 22:50:38 +04:00
|
|
|
{
|
|
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
|
|
|
return layer.output;
|
2015-02-11 06:41:03 +03:00
|
|
|
} else if(net.types[i] == DECONVOLUTIONAL){
|
|
|
|
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
|
|
|
|
return layer.output;
|
2013-11-13 22:50:38 +04:00
|
|
|
} else if(net.types[i] == MAXPOOL){
|
|
|
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
|
|
|
return layer.output;
|
2013-12-03 04:41:40 +04:00
|
|
|
} else if(net.types[i] == SOFTMAX){
|
|
|
|
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
|
|
|
return layer.output;
|
2014-08-08 23:04:15 +04:00
|
|
|
} else if(net.types[i] == DROPOUT){
|
2014-12-19 02:46:45 +03:00
|
|
|
dropout_layer layer = *(dropout_layer *)net.layers[i];
|
|
|
|
return layer.output;
|
2014-10-14 09:31:48 +04:00
|
|
|
} else if(net.types[i] == FREEWEIGHT){
|
|
|
|
return get_network_output_layer(net, i-1);
|
2013-11-13 22:50:38 +04:00
|
|
|
} else if(net.types[i] == CONNECTED){
|
|
|
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
|
|
|
return layer.output;
|
2014-12-16 22:40:05 +03:00
|
|
|
} else if(net.types[i] == CROP){
|
|
|
|
crop_layer layer = *(crop_layer *)net.layers[i];
|
|
|
|
return layer.output;
|
2014-04-17 04:05:29 +04:00
|
|
|
} else if(net.types[i] == NORMALIZATION){
|
|
|
|
normalization_layer layer = *(normalization_layer *)net.layers[i];
|
|
|
|
return layer.output;
|
2013-11-13 22:50:38 +04:00
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
2014-01-29 04:28:42 +04:00
|
|
|
float *get_network_output(network net)
|
2013-11-13 22:50:38 +04:00
|
|
|
{
|
2014-10-13 11:29:01 +04:00
|
|
|
int i;
|
|
|
|
for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
|
|
|
|
return get_network_output_layer(net, i);
|
2013-11-13 22:50:38 +04:00
|
|
|
}
|
|
|
|
|
2014-01-29 04:28:42 +04:00
|
|
|
float *get_network_delta_layer(network net, int i)
|
2013-11-13 22:50:38 +04:00
|
|
|
{
|
|
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
|
|
|
return layer.delta;
|
2015-02-11 06:41:03 +03:00
|
|
|
} else if(net.types[i] == DECONVOLUTIONAL){
|
|
|
|
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
|
|
|
|
return layer.delta;
|
2013-11-13 22:50:38 +04:00
|
|
|
} else if(net.types[i] == MAXPOOL){
|
|
|
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
|
|
|
return layer.delta;
|
2013-12-03 04:41:40 +04:00
|
|
|
} else if(net.types[i] == SOFTMAX){
|
|
|
|
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
|
|
|
return layer.delta;
|
2014-08-08 23:04:15 +04:00
|
|
|
} else if(net.types[i] == DROPOUT){
|
2014-12-19 02:46:45 +03:00
|
|
|
if(i == 0) return 0;
|
2014-08-08 23:04:15 +04:00
|
|
|
return get_network_delta_layer(net, i-1);
|
2014-10-14 09:31:48 +04:00
|
|
|
} else if(net.types[i] == FREEWEIGHT){
|
|
|
|
return get_network_delta_layer(net, i-1);
|
2013-11-13 22:50:38 +04:00
|
|
|
} else if(net.types[i] == CONNECTED){
|
|
|
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
|
|
|
return layer.delta;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2014-10-13 11:29:01 +04:00
|
|
|
float get_network_cost(network net)
|
|
|
|
{
|
|
|
|
if(net.types[net.n-1] == COST){
|
|
|
|
return ((cost_layer *)net.layers[net.n-1])->output[0];
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2014-01-29 04:28:42 +04:00
|
|
|
float *get_network_delta(network net)
|
2013-11-13 22:50:38 +04:00
|
|
|
{
|
|
|
|
return get_network_delta_layer(net, net.n-1);
|
|
|
|
}
|
|
|
|
|
2014-01-29 04:28:42 +04:00
|
|
|
float calculate_error_network(network net, float *truth)
|
2013-11-06 22:37:37 +04:00
|
|
|
{
|
2014-01-29 04:28:42 +04:00
|
|
|
float sum = 0;
|
|
|
|
float *delta = get_network_delta(net);
|
|
|
|
float *out = get_network_output(net);
|
2014-07-14 09:07:51 +04:00
|
|
|
int i;
|
|
|
|
for(i = 0; i < get_network_output_size(net)*net.batch; ++i){
|
|
|
|
//if(i %get_network_output_size(net) == 0) printf("\n");
|
|
|
|
//printf("%5.2f %5.2f, ", out[i], truth[i]);
|
2014-07-17 20:05:07 +04:00
|
|
|
//if(i == get_network_output_size(net)) printf("\n");
|
2013-12-07 01:26:09 +04:00
|
|
|
delta[i] = truth[i] - out[i];
|
2014-07-17 21:14:59 +04:00
|
|
|
//printf("%.10f, ", out[i]);
|
2014-01-28 11:16:56 +04:00
|
|
|
sum += delta[i]*delta[i];
|
2013-12-07 01:26:09 +04:00
|
|
|
}
|
2014-03-13 08:57:34 +04:00
|
|
|
//printf("\n");
|
2014-01-28 11:16:56 +04:00
|
|
|
return sum;
|
2013-12-07 01:26:09 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
int get_predicted_class_network(network net)
|
|
|
|
{
|
2014-01-29 04:28:42 +04:00
|
|
|
float *out = get_network_output(net);
|
2013-12-07 01:26:09 +04:00
|
|
|
int k = get_network_output_size(net);
|
|
|
|
return max_index(out, k);
|
|
|
|
}
|
|
|
|
|
2014-10-13 11:29:01 +04:00
|
|
|
void backward_network(network net, float *input)
|
2013-12-07 01:26:09 +04:00
|
|
|
{
|
2013-11-06 22:37:37 +04:00
|
|
|
int i;
|
2014-01-29 04:28:42 +04:00
|
|
|
float *prev_input;
|
|
|
|
float *prev_delta;
|
2013-11-06 22:37:37 +04:00
|
|
|
for(i = net.n-1; i >= 0; --i){
|
|
|
|
if(i == 0){
|
2013-11-13 22:50:38 +04:00
|
|
|
prev_input = input;
|
|
|
|
prev_delta = 0;
|
|
|
|
}else{
|
|
|
|
prev_input = get_network_output_layer(net, i-1);
|
|
|
|
prev_delta = get_network_delta_layer(net, i-1);
|
2013-11-06 22:37:37 +04:00
|
|
|
}
|
2015-02-11 06:41:03 +03:00
|
|
|
|
2013-11-06 22:37:37 +04:00
|
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
2014-12-04 10:20:29 +03:00
|
|
|
backward_convolutional_layer(layer, prev_input, prev_delta);
|
2015-02-11 06:41:03 +03:00
|
|
|
} else if(net.types[i] == DECONVOLUTIONAL){
|
|
|
|
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
|
|
|
|
backward_deconvolutional_layer(layer, prev_input, prev_delta);
|
2013-11-06 22:37:37 +04:00
|
|
|
}
|
|
|
|
else if(net.types[i] == MAXPOOL){
|
2013-12-03 04:41:40 +04:00
|
|
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
2014-10-22 01:49:18 +04:00
|
|
|
if(i != 0) backward_maxpool_layer(layer, prev_delta);
|
2013-12-03 04:41:40 +04:00
|
|
|
}
|
2014-12-13 23:01:21 +03:00
|
|
|
else if(net.types[i] == DROPOUT){
|
|
|
|
dropout_layer layer = *(dropout_layer *)net.layers[i];
|
|
|
|
backward_dropout_layer(layer, prev_delta);
|
|
|
|
}
|
2014-04-17 04:05:29 +04:00
|
|
|
else if(net.types[i] == NORMALIZATION){
|
|
|
|
normalization_layer layer = *(normalization_layer *)net.layers[i];
|
|
|
|
if(i != 0) backward_normalization_layer(layer, prev_input, prev_delta);
|
|
|
|
}
|
2013-12-03 04:41:40 +04:00
|
|
|
else if(net.types[i] == SOFTMAX){
|
|
|
|
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
2014-10-22 01:49:18 +04:00
|
|
|
if(i != 0) backward_softmax_layer(layer, prev_delta);
|
2013-11-06 22:37:37 +04:00
|
|
|
}
|
|
|
|
else if(net.types[i] == CONNECTED){
|
|
|
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
2014-05-10 02:14:52 +04:00
|
|
|
backward_connected_layer(layer, prev_input, prev_delta);
|
2013-11-06 22:37:37 +04:00
|
|
|
}
|
2014-10-13 11:29:01 +04:00
|
|
|
else if(net.types[i] == COST){
|
|
|
|
cost_layer layer = *(cost_layer *)net.layers[i];
|
|
|
|
backward_cost_layer(layer, prev_input, prev_delta);
|
|
|
|
}
|
2013-11-06 22:37:37 +04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-08-08 23:04:15 +04:00
|
|
|
float train_network_datum(network net, float *x, float *y)
|
2013-11-06 22:37:37 +04:00
|
|
|
{
|
2014-12-17 02:34:10 +03:00
|
|
|
#ifdef GPU
|
|
|
|
if(gpu_index >= 0) return train_network_datum_gpu(net, x, y);
|
|
|
|
#endif
|
2014-10-13 11:29:01 +04:00
|
|
|
forward_network(net, x, y, 1);
|
|
|
|
backward_network(net, x);
|
|
|
|
float error = get_network_cost(net);
|
2014-08-08 23:04:15 +04:00
|
|
|
update_network(net);
|
2014-02-14 22:26:31 +04:00
|
|
|
return error;
|
2013-12-07 01:26:09 +04:00
|
|
|
}
|
|
|
|
|
2014-08-08 23:04:15 +04:00
|
|
|
float train_network_sgd(network net, data d, int n)
|
2013-12-07 01:26:09 +04:00
|
|
|
{
|
2014-07-14 09:07:51 +04:00
|
|
|
int batch = net.batch;
|
|
|
|
float *X = calloc(batch*d.X.cols, sizeof(float));
|
|
|
|
float *y = calloc(batch*d.y.cols, sizeof(float));
|
|
|
|
|
2014-08-28 06:11:46 +04:00
|
|
|
int i;
|
2014-07-14 09:07:51 +04:00
|
|
|
float sum = 0;
|
2013-12-07 21:38:50 +04:00
|
|
|
for(i = 0; i < n; ++i){
|
2014-10-28 05:45:06 +03:00
|
|
|
get_random_batch(d, batch, X, y);
|
2014-08-08 23:04:15 +04:00
|
|
|
float err = train_network_datum(net, X, y);
|
2014-07-14 09:07:51 +04:00
|
|
|
sum += err;
|
2013-12-07 01:26:09 +04:00
|
|
|
}
|
2014-07-14 09:07:51 +04:00
|
|
|
free(X);
|
|
|
|
free(y);
|
|
|
|
return (float)sum/(n*batch);
|
2013-12-07 01:26:09 +04:00
|
|
|
}
|
2014-11-06 01:49:58 +03:00
|
|
|
|
2014-12-17 02:34:10 +03:00
|
|
|
float train_network(network net, data d)
|
2014-11-06 01:49:58 +03:00
|
|
|
{
|
|
|
|
int batch = net.batch;
|
2014-12-17 02:34:10 +03:00
|
|
|
int n = d.X.rows / batch;
|
2014-11-06 01:49:58 +03:00
|
|
|
float *X = calloc(batch*d.X.cols, sizeof(float));
|
|
|
|
float *y = calloc(batch*d.y.cols, sizeof(float));
|
|
|
|
|
|
|
|
int i;
|
|
|
|
float sum = 0;
|
|
|
|
for(i = 0; i < n; ++i){
|
|
|
|
get_next_batch(d, batch, i*batch, X, y);
|
|
|
|
float err = train_network_datum(net, X, y);
|
|
|
|
sum += err;
|
|
|
|
}
|
|
|
|
free(X);
|
|
|
|
free(y);
|
|
|
|
return (float)sum/(n*batch);
|
|
|
|
}
|
2013-12-07 01:26:09 +04:00
|
|
|
|
2014-12-17 02:34:10 +03:00
|
|
|
float train_network_batch(network net, data d, int n)
|
2013-12-07 01:26:09 +04:00
|
|
|
{
|
2014-12-17 02:34:10 +03:00
|
|
|
int i,j;
|
|
|
|
float sum = 0;
|
|
|
|
int batch = 2;
|
|
|
|
for(i = 0; i < n; ++i){
|
|
|
|
for(j = 0; j < batch; ++j){
|
|
|
|
int index = rand()%d.X.rows;
|
|
|
|
float *x = d.X.vals[index];
|
|
|
|
float *y = d.y.vals[index];
|
|
|
|
forward_network(net, x, y, 1);
|
|
|
|
backward_network(net, x);
|
|
|
|
sum += get_network_cost(net);
|
2013-12-03 04:41:40 +04:00
|
|
|
}
|
2014-12-17 02:34:10 +03:00
|
|
|
update_network(net);
|
2013-11-06 22:37:37 +04:00
|
|
|
}
|
2014-12-17 02:34:10 +03:00
|
|
|
return (float)sum/(n*batch);
|
2013-11-06 22:37:37 +04:00
|
|
|
}
|
2013-11-07 04:09:41 +04:00
|
|
|
|
2014-12-12 00:15:26 +03:00
|
|
|
void set_learning_network(network *net, float rate, float momentum, float decay)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
net->learning_rate=rate;
|
|
|
|
net->momentum = momentum;
|
|
|
|
net->decay = decay;
|
|
|
|
for(i = 0; i < net->n; ++i){
|
|
|
|
if(net->types[i] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer *layer = (convolutional_layer *)net->layers[i];
|
|
|
|
layer->learning_rate=rate;
|
|
|
|
layer->momentum = momentum;
|
|
|
|
layer->decay = decay;
|
|
|
|
}
|
|
|
|
else if(net->types[i] == CONNECTED){
|
|
|
|
connected_layer *layer = (connected_layer *)net->layers[i];
|
|
|
|
layer->learning_rate=rate;
|
|
|
|
layer->momentum = momentum;
|
|
|
|
layer->decay = decay;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void set_batch_network(network *net, int b)
|
|
|
|
{
|
|
|
|
net->batch = b;
|
|
|
|
int i;
|
|
|
|
for(i = 0; i < net->n; ++i){
|
|
|
|
if(net->types[i] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer *layer = (convolutional_layer *)net->layers[i];
|
|
|
|
layer->batch = b;
|
2015-02-11 06:41:03 +03:00
|
|
|
}else if(net->types[i] == DECONVOLUTIONAL){
|
|
|
|
deconvolutional_layer *layer = (deconvolutional_layer *)net->layers[i];
|
|
|
|
layer->batch = b;
|
2014-12-12 00:15:26 +03:00
|
|
|
}
|
|
|
|
else if(net->types[i] == MAXPOOL){
|
|
|
|
maxpool_layer *layer = (maxpool_layer *)net->layers[i];
|
|
|
|
layer->batch = b;
|
|
|
|
}
|
|
|
|
else if(net->types[i] == CONNECTED){
|
|
|
|
connected_layer *layer = (connected_layer *)net->layers[i];
|
|
|
|
layer->batch = b;
|
|
|
|
} else if(net->types[i] == DROPOUT){
|
|
|
|
dropout_layer *layer = (dropout_layer *) net->layers[i];
|
|
|
|
layer->batch = b;
|
|
|
|
}
|
|
|
|
else if(net->types[i] == FREEWEIGHT){
|
|
|
|
freeweight_layer *layer = (freeweight_layer *) net->layers[i];
|
|
|
|
layer->batch = b;
|
|
|
|
}
|
|
|
|
else if(net->types[i] == SOFTMAX){
|
|
|
|
softmax_layer *layer = (softmax_layer *)net->layers[i];
|
|
|
|
layer->batch = b;
|
|
|
|
}
|
|
|
|
else if(net->types[i] == COST){
|
|
|
|
cost_layer *layer = (cost_layer *)net->layers[i];
|
2015-01-13 04:27:08 +03:00
|
|
|
layer->batch = b;
|
|
|
|
}
|
|
|
|
else if(net->types[i] == CROP){
|
|
|
|
crop_layer *layer = (crop_layer *)net->layers[i];
|
2014-12-12 00:15:26 +03:00
|
|
|
layer->batch = b;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2014-05-10 02:14:52 +04:00
|
|
|
int get_network_input_size_layer(network net, int i)
|
|
|
|
{
|
|
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
|
|
|
return layer.h*layer.w*layer.c;
|
|
|
|
}
|
2015-02-11 06:41:03 +03:00
|
|
|
if(net.types[i] == DECONVOLUTIONAL){
|
|
|
|
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
|
|
|
|
return layer.h*layer.w*layer.c;
|
|
|
|
}
|
2014-05-10 02:14:52 +04:00
|
|
|
else if(net.types[i] == MAXPOOL){
|
|
|
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
|
|
|
return layer.h*layer.w*layer.c;
|
|
|
|
}
|
|
|
|
else if(net.types[i] == CONNECTED){
|
|
|
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
|
|
|
return layer.inputs;
|
2014-08-08 23:04:15 +04:00
|
|
|
} else if(net.types[i] == DROPOUT){
|
|
|
|
dropout_layer layer = *(dropout_layer *) net.layers[i];
|
|
|
|
return layer.inputs;
|
2014-12-16 22:40:05 +03:00
|
|
|
} else if(net.types[i] == CROP){
|
|
|
|
crop_layer layer = *(crop_layer *) net.layers[i];
|
|
|
|
return layer.c*layer.h*layer.w;
|
2014-05-10 02:14:52 +04:00
|
|
|
}
|
2014-10-14 09:31:48 +04:00
|
|
|
else if(net.types[i] == FREEWEIGHT){
|
|
|
|
freeweight_layer layer = *(freeweight_layer *) net.layers[i];
|
|
|
|
return layer.inputs;
|
|
|
|
}
|
2014-05-10 02:14:52 +04:00
|
|
|
else if(net.types[i] == SOFTMAX){
|
|
|
|
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
|
|
|
return layer.inputs;
|
|
|
|
}
|
2014-12-16 22:40:05 +03:00
|
|
|
printf("Can't find input size\n");
|
2014-05-10 02:14:52 +04:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2013-11-07 04:09:41 +04:00
|
|
|
int get_network_output_size_layer(network net, int i)
|
|
|
|
{
|
|
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
2013-11-13 22:50:38 +04:00
|
|
|
image output = get_convolutional_image(layer);
|
|
|
|
return output.h*output.w*output.c;
|
2013-11-07 04:09:41 +04:00
|
|
|
}
|
2015-02-11 06:41:03 +03:00
|
|
|
else if(net.types[i] == DECONVOLUTIONAL){
|
|
|
|
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
|
|
|
|
image output = get_deconvolutional_image(layer);
|
|
|
|
return output.h*output.w*output.c;
|
|
|
|
}
|
2013-11-07 04:09:41 +04:00
|
|
|
else if(net.types[i] == MAXPOOL){
|
|
|
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
2013-11-13 22:50:38 +04:00
|
|
|
image output = get_maxpool_image(layer);
|
|
|
|
return output.h*output.w*output.c;
|
2014-12-16 22:40:05 +03:00
|
|
|
}
|
|
|
|
else if(net.types[i] == CROP){
|
|
|
|
crop_layer layer = *(crop_layer *) net.layers[i];
|
|
|
|
return layer.c*layer.crop_height*layer.crop_width;
|
2013-11-07 04:09:41 +04:00
|
|
|
}
|
|
|
|
else if(net.types[i] == CONNECTED){
|
|
|
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
|
|
|
return layer.outputs;
|
2014-10-13 11:29:01 +04:00
|
|
|
}
|
|
|
|
else if(net.types[i] == DROPOUT){
|
2014-08-08 23:04:15 +04:00
|
|
|
dropout_layer layer = *(dropout_layer *) net.layers[i];
|
|
|
|
return layer.inputs;
|
2013-11-07 04:09:41 +04:00
|
|
|
}
|
2014-10-14 09:31:48 +04:00
|
|
|
else if(net.types[i] == FREEWEIGHT){
|
|
|
|
freeweight_layer layer = *(freeweight_layer *) net.layers[i];
|
|
|
|
return layer.inputs;
|
|
|
|
}
|
2013-12-03 04:41:40 +04:00
|
|
|
else if(net.types[i] == SOFTMAX){
|
|
|
|
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
|
|
|
return layer.inputs;
|
|
|
|
}
|
2014-12-16 22:40:05 +03:00
|
|
|
printf("Can't find output size\n");
|
2013-11-07 04:09:41 +04:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2014-03-13 08:57:34 +04:00
|
|
|
int resize_network(network net, int h, int w, int c)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
for (i = 0; i < net.n; ++i){
|
|
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer *layer = (convolutional_layer *)net.layers[i];
|
2015-02-11 06:41:03 +03:00
|
|
|
resize_convolutional_layer(layer, h, w);
|
2014-03-13 08:57:34 +04:00
|
|
|
image output = get_convolutional_image(*layer);
|
|
|
|
h = output.h;
|
|
|
|
w = output.w;
|
|
|
|
c = output.c;
|
2015-02-11 06:41:03 +03:00
|
|
|
} else if(net.types[i] == DECONVOLUTIONAL){
|
|
|
|
deconvolutional_layer *layer = (deconvolutional_layer *)net.layers[i];
|
|
|
|
resize_deconvolutional_layer(layer, h, w);
|
|
|
|
image output = get_deconvolutional_image(*layer);
|
|
|
|
h = output.h;
|
|
|
|
w = output.w;
|
|
|
|
c = output.c;
|
2014-04-17 04:05:29 +04:00
|
|
|
}else if(net.types[i] == MAXPOOL){
|
2014-03-13 08:57:34 +04:00
|
|
|
maxpool_layer *layer = (maxpool_layer *)net.layers[i];
|
2015-02-11 06:41:03 +03:00
|
|
|
resize_maxpool_layer(layer, h, w);
|
2014-03-13 08:57:34 +04:00
|
|
|
image output = get_maxpool_image(*layer);
|
|
|
|
h = output.h;
|
|
|
|
w = output.w;
|
|
|
|
c = output.c;
|
2015-02-11 06:41:03 +03:00
|
|
|
}else if(net.types[i] == DROPOUT){
|
|
|
|
dropout_layer *layer = (dropout_layer *)net.layers[i];
|
|
|
|
resize_dropout_layer(layer, h*w*c);
|
2014-04-17 04:05:29 +04:00
|
|
|
}else if(net.types[i] == NORMALIZATION){
|
|
|
|
normalization_layer *layer = (normalization_layer *)net.layers[i];
|
2015-02-11 06:41:03 +03:00
|
|
|
resize_normalization_layer(layer, h, w);
|
2014-04-17 04:05:29 +04:00
|
|
|
image output = get_normalization_image(*layer);
|
|
|
|
h = output.h;
|
|
|
|
w = output.w;
|
|
|
|
c = output.c;
|
|
|
|
}else{
|
2014-03-13 08:57:34 +04:00
|
|
|
error("Cannot resize this type of layer");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
2014-02-15 04:09:07 +04:00
|
|
|
|
2013-11-13 22:50:38 +04:00
|
|
|
int get_network_output_size(network net)
|
2013-11-07 04:09:41 +04:00
|
|
|
{
|
2014-10-13 11:29:01 +04:00
|
|
|
int i;
|
|
|
|
for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
|
2013-11-13 22:50:38 +04:00
|
|
|
return get_network_output_size_layer(net, i);
|
2013-11-07 04:09:41 +04:00
|
|
|
}
|
|
|
|
|
2014-05-10 02:14:52 +04:00
|
|
|
int get_network_input_size(network net)
|
|
|
|
{
|
2014-07-14 09:07:51 +04:00
|
|
|
return get_network_input_size_layer(net, 0);
|
2014-05-10 02:14:52 +04:00
|
|
|
}
|
|
|
|
|
2013-11-07 04:09:41 +04:00
|
|
|
image get_network_image_layer(network net, int i)
|
|
|
|
{
|
|
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
2013-11-13 22:50:38 +04:00
|
|
|
return get_convolutional_image(layer);
|
2013-11-07 04:09:41 +04:00
|
|
|
}
|
2015-02-11 06:41:03 +03:00
|
|
|
else if(net.types[i] == DECONVOLUTIONAL){
|
|
|
|
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
|
|
|
|
return get_deconvolutional_image(layer);
|
|
|
|
}
|
2013-11-07 04:09:41 +04:00
|
|
|
else if(net.types[i] == MAXPOOL){
|
|
|
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
2013-11-13 22:50:38 +04:00
|
|
|
return get_maxpool_image(layer);
|
2013-11-07 04:09:41 +04:00
|
|
|
}
|
2014-04-17 04:05:29 +04:00
|
|
|
else if(net.types[i] == NORMALIZATION){
|
|
|
|
normalization_layer layer = *(normalization_layer *)net.layers[i];
|
|
|
|
return get_normalization_image(layer);
|
|
|
|
}
|
2015-01-31 09:05:23 +03:00
|
|
|
else if(net.types[i] == DROPOUT){
|
|
|
|
return get_network_image_layer(net, i-1);
|
|
|
|
}
|
2014-08-11 23:52:07 +04:00
|
|
|
else if(net.types[i] == CROP){
|
|
|
|
crop_layer layer = *(crop_layer *)net.layers[i];
|
|
|
|
return get_crop_image(layer);
|
|
|
|
}
|
2013-12-03 04:41:40 +04:00
|
|
|
return make_empty_image(0,0,0);
|
2013-11-07 04:09:41 +04:00
|
|
|
}
|
|
|
|
|
2013-11-04 23:11:01 +04:00
|
|
|
image get_network_image(network net)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
for(i = net.n-1; i >= 0; --i){
|
2013-11-13 22:50:38 +04:00
|
|
|
image m = get_network_image_layer(net, i);
|
|
|
|
if(m.h != 0) return m;
|
|
|
|
}
|
2013-12-03 04:41:40 +04:00
|
|
|
return make_empty_image(0,0,0);
|
2013-11-13 22:50:38 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
void visualize_network(network net)
|
|
|
|
{
|
2014-04-11 12:00:27 +04:00
|
|
|
image *prev = 0;
|
2013-11-13 22:50:38 +04:00
|
|
|
int i;
|
2013-12-03 04:41:40 +04:00
|
|
|
char buff[256];
|
2014-10-25 22:57:26 +04:00
|
|
|
//show_image(get_network_image_layer(net, 0), "Crop");
|
2013-12-03 04:41:40 +04:00
|
|
|
for(i = 0; i < net.n; ++i){
|
|
|
|
sprintf(buff, "Layer %d", i);
|
2013-11-04 23:11:01 +04:00
|
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
2014-04-11 12:00:27 +04:00
|
|
|
prev = visualize_convolutional_layer(layer, buff, prev);
|
2014-04-17 04:05:29 +04:00
|
|
|
}
|
|
|
|
if(net.types[i] == NORMALIZATION){
|
|
|
|
normalization_layer layer = *(normalization_layer *)net.layers[i];
|
|
|
|
visualize_normalization_layer(layer, buff);
|
2013-11-04 23:11:01 +04:00
|
|
|
}
|
2013-11-13 22:50:38 +04:00
|
|
|
}
|
2013-11-04 23:11:01 +04:00
|
|
|
}
|
|
|
|
|
2014-11-19 00:51:04 +03:00
|
|
|
void top_predictions(network net, int k, int *index)
|
2014-10-25 22:57:26 +04:00
|
|
|
{
|
2014-11-19 00:51:04 +03:00
|
|
|
int size = get_network_output_size(net);
|
2014-10-25 22:57:26 +04:00
|
|
|
float *out = get_network_output(net);
|
2014-11-19 00:51:04 +03:00
|
|
|
top_k(out, size, k, index);
|
2014-10-25 22:57:26 +04:00
|
|
|
}
|
|
|
|
|
2014-11-06 01:49:58 +03:00
|
|
|
|
2014-01-29 04:28:42 +04:00
|
|
|
float *network_predict(network net, float *input)
|
2013-12-07 21:38:50 +04:00
|
|
|
{
|
2014-12-17 02:34:10 +03:00
|
|
|
#ifdef GPU
|
2015-01-23 03:38:24 +03:00
|
|
|
if(gpu_index >= 0) return network_predict_gpu(net, input);
|
2014-12-17 02:34:10 +03:00
|
|
|
#endif
|
|
|
|
|
2014-10-13 11:29:01 +04:00
|
|
|
forward_network(net, input, 0, 0);
|
2014-01-29 04:28:42 +04:00
|
|
|
float *out = get_network_output(net);
|
2013-12-07 21:38:50 +04:00
|
|
|
return out;
|
|
|
|
}
|
|
|
|
|
2014-08-11 23:52:07 +04:00
|
|
|
matrix network_predict_data_multi(network net, data test, int n)
|
|
|
|
{
|
|
|
|
int i,j,b,m;
|
|
|
|
int k = get_network_output_size(net);
|
|
|
|
matrix pred = make_matrix(test.X.rows, k);
|
|
|
|
float *X = calloc(net.batch*test.X.rows, sizeof(float));
|
|
|
|
for(i = 0; i < test.X.rows; i += net.batch){
|
|
|
|
for(b = 0; b < net.batch; ++b){
|
|
|
|
if(i+b == test.X.rows) break;
|
|
|
|
memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
|
|
|
|
}
|
|
|
|
for(m = 0; m < n; ++m){
|
|
|
|
float *out = network_predict(net, X);
|
|
|
|
for(b = 0; b < net.batch; ++b){
|
|
|
|
if(i+b == test.X.rows) break;
|
|
|
|
for(j = 0; j < k; ++j){
|
|
|
|
pred.vals[i+b][j] += out[j+b*k]/n;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
free(X);
|
|
|
|
return pred;
|
|
|
|
}
|
|
|
|
|
2013-12-07 21:38:50 +04:00
|
|
|
matrix network_predict_data(network net, data test)
|
|
|
|
{
|
2014-07-14 09:07:51 +04:00
|
|
|
int i,j,b;
|
2013-12-07 21:38:50 +04:00
|
|
|
int k = get_network_output_size(net);
|
|
|
|
matrix pred = make_matrix(test.X.rows, k);
|
2014-11-06 01:49:58 +03:00
|
|
|
float *X = calloc(net.batch*test.X.cols, sizeof(float));
|
2014-07-14 09:07:51 +04:00
|
|
|
for(i = 0; i < test.X.rows; i += net.batch){
|
|
|
|
for(b = 0; b < net.batch; ++b){
|
|
|
|
if(i+b == test.X.rows) break;
|
|
|
|
memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
|
|
|
|
}
|
|
|
|
float *out = network_predict(net, X);
|
|
|
|
for(b = 0; b < net.batch; ++b){
|
|
|
|
if(i+b == test.X.rows) break;
|
|
|
|
for(j = 0; j < k; ++j){
|
|
|
|
pred.vals[i+b][j] = out[j+b*k];
|
|
|
|
}
|
2013-12-07 21:38:50 +04:00
|
|
|
}
|
|
|
|
}
|
2014-07-14 09:07:51 +04:00
|
|
|
free(X);
|
2013-12-07 21:38:50 +04:00
|
|
|
return pred;
|
|
|
|
}
|
|
|
|
|
2013-12-03 04:41:40 +04:00
|
|
|
void print_network(network net)
|
|
|
|
{
|
|
|
|
int i,j;
|
|
|
|
for(i = 0; i < net.n; ++i){
|
2014-01-29 04:28:42 +04:00
|
|
|
float *output = 0;
|
2013-12-03 04:41:40 +04:00
|
|
|
int n = 0;
|
|
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
|
|
|
output = layer.output;
|
|
|
|
image m = get_convolutional_image(layer);
|
|
|
|
n = m.h*m.w*m.c;
|
|
|
|
}
|
|
|
|
else if(net.types[i] == MAXPOOL){
|
|
|
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
|
|
|
output = layer.output;
|
|
|
|
image m = get_maxpool_image(layer);
|
|
|
|
n = m.h*m.w*m.c;
|
|
|
|
}
|
2014-08-11 23:52:07 +04:00
|
|
|
else if(net.types[i] == CROP){
|
|
|
|
crop_layer layer = *(crop_layer *)net.layers[i];
|
|
|
|
output = layer.output;
|
|
|
|
image m = get_crop_image(layer);
|
|
|
|
n = m.h*m.w*m.c;
|
|
|
|
}
|
2013-12-03 04:41:40 +04:00
|
|
|
else if(net.types[i] == CONNECTED){
|
|
|
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
|
|
|
output = layer.output;
|
|
|
|
n = layer.outputs;
|
|
|
|
}
|
|
|
|
else if(net.types[i] == SOFTMAX){
|
|
|
|
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
|
|
|
output = layer.output;
|
|
|
|
n = layer.inputs;
|
|
|
|
}
|
2014-01-29 04:28:42 +04:00
|
|
|
float mean = mean_array(output, n);
|
|
|
|
float vari = variance_array(output, n);
|
2013-12-06 01:17:16 +04:00
|
|
|
fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari);
|
2013-12-03 04:41:40 +04:00
|
|
|
if(n > 100) n = 100;
|
2013-12-06 01:17:16 +04:00
|
|
|
for(j = 0; j < n; ++j) fprintf(stderr, "%f, ", output[j]);
|
|
|
|
if(n == 100)fprintf(stderr,".....\n");
|
|
|
|
fprintf(stderr, "\n");
|
2013-12-03 04:41:40 +04:00
|
|
|
}
|
|
|
|
}
|
2013-12-07 21:38:50 +04:00
|
|
|
|
2014-12-18 22:28:42 +03:00
|
|
|
void compare_networks(network n1, network n2, data test)
|
|
|
|
{
|
|
|
|
matrix g1 = network_predict_data(n1, test);
|
|
|
|
matrix g2 = network_predict_data(n2, test);
|
|
|
|
int i;
|
|
|
|
int a,b,c,d;
|
|
|
|
a = b = c = d = 0;
|
|
|
|
for(i = 0; i < g1.rows; ++i){
|
|
|
|
int truth = max_index(test.y.vals[i], test.y.cols);
|
|
|
|
int p1 = max_index(g1.vals[i], g1.cols);
|
|
|
|
int p2 = max_index(g2.vals[i], g2.cols);
|
|
|
|
if(p1 == truth){
|
|
|
|
if(p2 == truth) ++d;
|
|
|
|
else ++c;
|
|
|
|
}else{
|
|
|
|
if(p2 == truth) ++b;
|
|
|
|
else ++a;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
printf("%5d %5d\n%5d %5d\n", a, b, c, d);
|
2014-12-19 00:21:30 +03:00
|
|
|
float num = pow((abs(b - c) - 1.), 2.);
|
|
|
|
float den = b + c;
|
|
|
|
printf("%f\n", num/den);
|
2014-12-18 22:28:42 +03:00
|
|
|
}
|
|
|
|
|
2014-01-29 04:28:42 +04:00
|
|
|
float network_accuracy(network net, data d)
|
2013-12-07 01:26:09 +04:00
|
|
|
{
|
2013-12-07 21:38:50 +04:00
|
|
|
matrix guess = network_predict_data(net, d);
|
2014-12-12 00:15:26 +03:00
|
|
|
float acc = matrix_topk_accuracy(d.y, guess,1);
|
|
|
|
free_matrix(guess);
|
|
|
|
return acc;
|
|
|
|
}
|
|
|
|
|
|
|
|
float *network_accuracies(network net, data d)
|
|
|
|
{
|
|
|
|
static float acc[2];
|
|
|
|
matrix guess = network_predict_data(net, d);
|
|
|
|
acc[0] = matrix_topk_accuracy(d.y, guess,1);
|
|
|
|
acc[1] = matrix_topk_accuracy(d.y, guess,5);
|
2013-12-07 21:38:50 +04:00
|
|
|
free_matrix(guess);
|
|
|
|
return acc;
|
2013-12-07 01:26:09 +04:00
|
|
|
}
|
|
|
|
|
2014-12-12 00:15:26 +03:00
|
|
|
|
2014-08-11 23:52:07 +04:00
|
|
|
float network_accuracy_multi(network net, data d, int n)
|
|
|
|
{
|
|
|
|
matrix guess = network_predict_data_multi(net, d, n);
|
2014-12-12 00:15:26 +03:00
|
|
|
float acc = matrix_topk_accuracy(d.y, guess,1);
|
2014-08-11 23:52:07 +04:00
|
|
|
free_matrix(guess);
|
|
|
|
return acc;
|
|
|
|
}
|
|
|
|
|
2014-04-11 12:00:27 +04:00
|
|
|
|