darknet/src/network.c

744 lines
23 KiB
C
Raw Normal View History

2013-11-13 22:50:38 +04:00
#include <stdio.h>
2014-10-22 01:49:18 +04:00
#include <time.h>
2013-11-04 23:11:01 +04:00
#include "network.h"
#include "image.h"
2013-11-13 22:50:38 +04:00
#include "data.h"
2013-12-03 04:41:40 +04:00
#include "utils.h"
2015-03-12 08:20:15 +03:00
#include "params.h"
2013-11-04 23:11:01 +04:00
2014-08-11 23:52:07 +04:00
#include "crop_layer.h"
2013-11-04 23:11:01 +04:00
#include "connected_layer.h"
#include "convolutional_layer.h"
2015-02-11 06:41:03 +03:00
#include "deconvolutional_layer.h"
2015-03-05 01:56:38 +03:00
#include "detection_layer.h"
2013-11-04 23:11:01 +04:00
#include "maxpool_layer.h"
2014-10-13 11:29:01 +04:00
#include "cost_layer.h"
2014-04-17 04:05:29 +04:00
#include "normalization_layer.h"
2013-12-03 04:41:40 +04:00
#include "softmax_layer.h"
2014-08-08 23:04:15 +04:00
#include "dropout_layer.h"
2013-11-04 23:11:01 +04:00
2015-01-14 23:18:57 +03:00
char *get_layer_string(LAYER_TYPE a)
{
switch(a){
case CONVOLUTIONAL:
return "convolutional";
2015-02-11 06:41:03 +03:00
case DECONVOLUTIONAL:
return "deconvolutional";
2015-01-14 23:18:57 +03:00
case CONNECTED:
return "connected";
case MAXPOOL:
return "maxpool";
case SOFTMAX:
return "softmax";
2015-03-05 01:56:38 +03:00
case DETECTION:
return "detection";
2015-01-14 23:18:57 +03:00
case NORMALIZATION:
return "normalization";
case DROPOUT:
return "dropout";
case CROP:
return "crop";
case COST:
return "cost";
default:
break;
}
return "none";
}
2015-03-12 08:20:15 +03:00
network make_network(int n)
{
network net;
net.n = n;
net.layers = calloc(net.n, sizeof(void *));
net.types = calloc(net.n, sizeof(LAYER_TYPE));
2013-12-07 01:26:09 +04:00
net.outputs = 0;
net.output = 0;
2015-01-23 03:38:24 +03:00
net.seen = 0;
2015-03-12 08:20:15 +03:00
net.batch = 0;
net.inputs = 0;
net.h = net.w = net.c = 0;
2014-05-10 02:14:52 +04:00
#ifdef GPU
2015-01-23 03:38:24 +03:00
net.input_gpu = calloc(1, sizeof(float *));
net.truth_gpu = calloc(1, sizeof(float *));
2014-05-10 02:14:52 +04:00
#endif
return net;
}
2015-03-12 08:20:15 +03:00
void forward_network(network net, network_state state)
2014-07-14 09:07:51 +04:00
{
int i;
for(i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){
2015-03-12 08:20:15 +03:00
forward_convolutional_layer(*(convolutional_layer *)net.layers[i], state);
2013-11-04 23:11:01 +04:00
}
2015-02-11 06:41:03 +03:00
else if(net.types[i] == DECONVOLUTIONAL){
2015-03-12 08:20:15 +03:00
forward_deconvolutional_layer(*(deconvolutional_layer *)net.layers[i], state);
2015-02-11 06:41:03 +03:00
}
2015-03-05 01:56:38 +03:00
else if(net.types[i] == DETECTION){
2015-03-12 08:20:15 +03:00
forward_detection_layer(*(detection_layer *)net.layers[i], state);
2015-03-05 01:56:38 +03:00
}
2013-11-04 23:11:01 +04:00
else if(net.types[i] == CONNECTED){
2015-03-12 08:20:15 +03:00
forward_connected_layer(*(connected_layer *)net.layers[i], state);
2013-11-04 23:11:01 +04:00
}
2014-08-11 23:52:07 +04:00
else if(net.types[i] == CROP){
2015-03-12 08:20:15 +03:00
forward_crop_layer(*(crop_layer *)net.layers[i], state);
2014-08-11 23:52:07 +04:00
}
2014-10-13 11:29:01 +04:00
else if(net.types[i] == COST){
2015-03-12 08:20:15 +03:00
forward_cost_layer(*(cost_layer *)net.layers[i], state);
2014-10-13 11:29:01 +04:00
}
2013-12-03 04:41:40 +04:00
else if(net.types[i] == SOFTMAX){
2015-03-12 08:20:15 +03:00
forward_softmax_layer(*(softmax_layer *)net.layers[i], state);
2013-12-03 04:41:40 +04:00
}
2013-11-04 23:11:01 +04:00
else if(net.types[i] == MAXPOOL){
2015-03-12 08:20:15 +03:00
forward_maxpool_layer(*(maxpool_layer *)net.layers[i], state);
2013-11-04 23:11:01 +04:00
}
2014-04-17 04:05:29 +04:00
else if(net.types[i] == NORMALIZATION){
2015-03-12 08:20:15 +03:00
forward_normalization_layer(*(normalization_layer *)net.layers[i], state);
2014-04-17 04:05:29 +04:00
}
2014-08-08 23:04:15 +04:00
else if(net.types[i] == DROPOUT){
2015-03-12 08:20:15 +03:00
forward_dropout_layer(*(dropout_layer *)net.layers[i], state);
2014-08-08 23:04:15 +04:00
}
2015-03-12 08:20:15 +03:00
state.input = get_network_output_layer(net, i);
2013-11-04 23:11:01 +04:00
}
}
2014-08-08 23:04:15 +04:00
void update_network(network net)
{
int i;
2015-03-22 19:56:40 +03:00
int update_batch = net.batch*net.subdivisions;
for(i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
2015-03-22 19:56:40 +03:00
update_convolutional_layer(layer, update_batch, net.learning_rate, net.momentum, net.decay);
}
2015-02-11 06:41:03 +03:00
else if(net.types[i] == DECONVOLUTIONAL){
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
2015-03-12 08:20:15 +03:00
update_deconvolutional_layer(layer, net.learning_rate, net.momentum, net.decay);
2014-04-17 04:05:29 +04:00
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
2015-03-22 19:56:40 +03:00
update_connected_layer(layer, update_batch, net.learning_rate, net.momentum, net.decay);
}
}
}
float *get_network_output_layer(network net, int i)
2013-11-13 22:50:38 +04:00
{
if(net.types[i] == CONVOLUTIONAL){
2015-03-12 08:20:15 +03:00
return ((convolutional_layer *)net.layers[i]) -> output;
2015-02-11 06:41:03 +03:00
} else if(net.types[i] == DECONVOLUTIONAL){
2015-03-12 08:20:15 +03:00
return ((deconvolutional_layer *)net.layers[i]) -> output;
2013-11-13 22:50:38 +04:00
} else if(net.types[i] == MAXPOOL){
2015-03-12 08:20:15 +03:00
return ((maxpool_layer *)net.layers[i]) -> output;
2015-03-05 01:56:38 +03:00
} else if(net.types[i] == DETECTION){
2015-03-12 08:20:15 +03:00
return ((detection_layer *)net.layers[i]) -> output;
2013-12-03 04:41:40 +04:00
} else if(net.types[i] == SOFTMAX){
2015-03-12 08:20:15 +03:00
return ((softmax_layer *)net.layers[i]) -> output;
2014-08-08 23:04:15 +04:00
} else if(net.types[i] == DROPOUT){
2014-10-14 09:31:48 +04:00
return get_network_output_layer(net, i-1);
2013-11-13 22:50:38 +04:00
} else if(net.types[i] == CONNECTED){
2015-03-12 08:20:15 +03:00
return ((connected_layer *)net.layers[i]) -> output;
2014-12-16 22:40:05 +03:00
} else if(net.types[i] == CROP){
2015-03-12 08:20:15 +03:00
return ((crop_layer *)net.layers[i]) -> output;
2014-04-17 04:05:29 +04:00
} else if(net.types[i] == NORMALIZATION){
2015-03-12 08:20:15 +03:00
return ((normalization_layer *)net.layers[i]) -> output;
2013-11-13 22:50:38 +04:00
}
return 0;
}
2015-03-12 08:20:15 +03:00
float *get_network_output(network net)
2013-11-13 22:50:38 +04:00
{
2014-10-13 11:29:01 +04:00
int i;
for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
return get_network_output_layer(net, i);
2013-11-13 22:50:38 +04:00
}
float *get_network_delta_layer(network net, int i)
2013-11-13 22:50:38 +04:00
{
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
return layer.delta;
2015-02-11 06:41:03 +03:00
} else if(net.types[i] == DECONVOLUTIONAL){
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
return layer.delta;
2013-11-13 22:50:38 +04:00
} else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
return layer.delta;
2013-12-03 04:41:40 +04:00
} else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.delta;
2015-03-05 01:56:38 +03:00
} else if(net.types[i] == DETECTION){
detection_layer layer = *(detection_layer *)net.layers[i];
return layer.delta;
2014-08-08 23:04:15 +04:00
} else if(net.types[i] == DROPOUT){
2014-12-19 02:46:45 +03:00
if(i == 0) return 0;
2014-08-08 23:04:15 +04:00
return get_network_delta_layer(net, i-1);
2013-11-13 22:50:38 +04:00
} else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.delta;
}
return 0;
}
2014-10-13 11:29:01 +04:00
float get_network_cost(network net)
{
if(net.types[net.n-1] == COST){
return ((cost_layer *)net.layers[net.n-1])->output[0];
}
2015-04-24 20:27:50 +03:00
if(net.types[net.n-1] == DETECTION){
return ((detection_layer *)net.layers[net.n-1])->cost[0];
}
2014-10-13 11:29:01 +04:00
return 0;
}
float *get_network_delta(network net)
2013-11-13 22:50:38 +04:00
{
return get_network_delta_layer(net, net.n-1);
}
2013-12-07 01:26:09 +04:00
int get_predicted_class_network(network net)
{
float *out = get_network_output(net);
2013-12-07 01:26:09 +04:00
int k = get_network_output_size(net);
return max_index(out, k);
}
2015-03-12 08:20:15 +03:00
void backward_network(network net, network_state state)
2013-12-07 01:26:09 +04:00
{
int i;
2015-03-12 08:20:15 +03:00
float *original_input = state.input;
for(i = net.n-1; i >= 0; --i){
if(i == 0){
2015-03-12 08:20:15 +03:00
state.input = original_input;
state.delta = 0;
2013-11-13 22:50:38 +04:00
}else{
2015-03-12 08:20:15 +03:00
state.input = get_network_output_layer(net, i-1);
state.delta = get_network_delta_layer(net, i-1);
}
2015-02-11 06:41:03 +03:00
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
2015-03-12 08:20:15 +03:00
backward_convolutional_layer(layer, state);
2015-02-11 06:41:03 +03:00
} else if(net.types[i] == DECONVOLUTIONAL){
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
2015-03-12 08:20:15 +03:00
backward_deconvolutional_layer(layer, state);
}
else if(net.types[i] == MAXPOOL){
2013-12-03 04:41:40 +04:00
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
2015-03-12 08:20:15 +03:00
if(i != 0) backward_maxpool_layer(layer, state);
2013-12-03 04:41:40 +04:00
}
2014-12-13 23:01:21 +03:00
else if(net.types[i] == DROPOUT){
dropout_layer layer = *(dropout_layer *)net.layers[i];
2015-03-12 08:20:15 +03:00
backward_dropout_layer(layer, state);
2014-12-13 23:01:21 +03:00
}
2015-03-05 01:56:38 +03:00
else if(net.types[i] == DETECTION){
detection_layer layer = *(detection_layer *)net.layers[i];
2015-03-12 08:20:15 +03:00
backward_detection_layer(layer, state);
2015-03-05 01:56:38 +03:00
}
2014-04-17 04:05:29 +04:00
else if(net.types[i] == NORMALIZATION){
normalization_layer layer = *(normalization_layer *)net.layers[i];
2015-03-12 08:20:15 +03:00
if(i != 0) backward_normalization_layer(layer, state);
2014-04-17 04:05:29 +04:00
}
2013-12-03 04:41:40 +04:00
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
2015-03-12 08:20:15 +03:00
if(i != 0) backward_softmax_layer(layer, state);
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
2015-03-12 08:20:15 +03:00
backward_connected_layer(layer, state);
}
2014-10-13 11:29:01 +04:00
else if(net.types[i] == COST){
cost_layer layer = *(cost_layer *)net.layers[i];
2015-03-12 08:20:15 +03:00
backward_cost_layer(layer, state);
2014-10-13 11:29:01 +04:00
}
}
}
2014-08-08 23:04:15 +04:00
float train_network_datum(network net, float *x, float *y)
{
2014-12-17 02:34:10 +03:00
#ifdef GPU
if(gpu_index >= 0) return train_network_datum_gpu(net, x, y);
#endif
2015-03-12 08:20:15 +03:00
network_state state;
state.input = x;
state.truth = y;
state.train = 1;
forward_network(net, state);
backward_network(net, state);
2014-10-13 11:29:01 +04:00
float error = get_network_cost(net);
2015-03-22 19:56:40 +03:00
if((net.seen/net.batch)%net.subdivisions == 0) update_network(net);
2014-02-14 22:26:31 +04:00
return error;
2013-12-07 01:26:09 +04:00
}
2014-08-08 23:04:15 +04:00
float train_network_sgd(network net, data d, int n)
2013-12-07 01:26:09 +04:00
{
2014-07-14 09:07:51 +04:00
int batch = net.batch;
float *X = calloc(batch*d.X.cols, sizeof(float));
float *y = calloc(batch*d.y.cols, sizeof(float));
2014-08-28 06:11:46 +04:00
int i;
2014-07-14 09:07:51 +04:00
float sum = 0;
2013-12-07 21:38:50 +04:00
for(i = 0; i < n; ++i){
2015-03-22 19:56:40 +03:00
net.seen += batch;
get_random_batch(d, batch, X, y);
2014-08-08 23:04:15 +04:00
float err = train_network_datum(net, X, y);
2014-07-14 09:07:51 +04:00
sum += err;
2013-12-07 01:26:09 +04:00
}
2014-07-14 09:07:51 +04:00
free(X);
free(y);
return (float)sum/(n*batch);
2013-12-07 01:26:09 +04:00
}
2014-11-06 01:49:58 +03:00
2014-12-17 02:34:10 +03:00
float train_network(network net, data d)
2014-11-06 01:49:58 +03:00
{
int batch = net.batch;
2014-12-17 02:34:10 +03:00
int n = d.X.rows / batch;
2014-11-06 01:49:58 +03:00
float *X = calloc(batch*d.X.cols, sizeof(float));
float *y = calloc(batch*d.y.cols, sizeof(float));
int i;
float sum = 0;
for(i = 0; i < n; ++i){
get_next_batch(d, batch, i*batch, X, y);
2015-03-22 19:56:40 +03:00
net.seen += batch;
2014-11-06 01:49:58 +03:00
float err = train_network_datum(net, X, y);
sum += err;
}
free(X);
free(y);
return (float)sum/(n*batch);
}
2013-12-07 01:26:09 +04:00
2014-12-17 02:34:10 +03:00
float train_network_batch(network net, data d, int n)
2013-12-07 01:26:09 +04:00
{
2014-12-17 02:34:10 +03:00
int i,j;
2015-03-12 08:20:15 +03:00
network_state state;
state.train = 1;
2014-12-17 02:34:10 +03:00
float sum = 0;
int batch = 2;
for(i = 0; i < n; ++i){
for(j = 0; j < batch; ++j){
int index = rand()%d.X.rows;
2015-03-12 08:20:15 +03:00
state.input = d.X.vals[index];
state.truth = d.y.vals[index];
forward_network(net, state);
backward_network(net, state);
2014-12-17 02:34:10 +03:00
sum += get_network_cost(net);
2013-12-03 04:41:40 +04:00
}
2014-12-17 02:34:10 +03:00
update_network(net);
}
2014-12-17 02:34:10 +03:00
return (float)sum/(n*batch);
}
2014-12-12 00:15:26 +03:00
void set_batch_network(network *net, int b)
{
net->batch = b;
int i;
for(i = 0; i < net->n; ++i){
if(net->types[i] == CONVOLUTIONAL){
convolutional_layer *layer = (convolutional_layer *)net->layers[i];
layer->batch = b;
2015-02-11 06:41:03 +03:00
}else if(net->types[i] == DECONVOLUTIONAL){
deconvolutional_layer *layer = (deconvolutional_layer *)net->layers[i];
layer->batch = b;
2014-12-12 00:15:26 +03:00
}
else if(net->types[i] == MAXPOOL){
maxpool_layer *layer = (maxpool_layer *)net->layers[i];
layer->batch = b;
}
else if(net->types[i] == CONNECTED){
connected_layer *layer = (connected_layer *)net->layers[i];
layer->batch = b;
} else if(net->types[i] == DROPOUT){
dropout_layer *layer = (dropout_layer *) net->layers[i];
layer->batch = b;
2015-03-05 01:56:38 +03:00
} else if(net->types[i] == DETECTION){
detection_layer *layer = (detection_layer *) net->layers[i];
layer->batch = b;
2014-12-12 00:15:26 +03:00
}
else if(net->types[i] == SOFTMAX){
softmax_layer *layer = (softmax_layer *)net->layers[i];
layer->batch = b;
}
else if(net->types[i] == COST){
cost_layer *layer = (cost_layer *)net->layers[i];
2015-01-13 04:27:08 +03:00
layer->batch = b;
}
else if(net->types[i] == CROP){
crop_layer *layer = (crop_layer *)net->layers[i];
2014-12-12 00:15:26 +03:00
layer->batch = b;
}
}
}
2014-05-10 02:14:52 +04:00
int get_network_input_size_layer(network net, int i)
{
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
return layer.h*layer.w*layer.c;
}
2015-02-11 06:41:03 +03:00
if(net.types[i] == DECONVOLUTIONAL){
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
return layer.h*layer.w*layer.c;
}
2014-05-10 02:14:52 +04:00
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
return layer.h*layer.w*layer.c;
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.inputs;
2014-08-08 23:04:15 +04:00
} else if(net.types[i] == DROPOUT){
dropout_layer layer = *(dropout_layer *) net.layers[i];
return layer.inputs;
2015-03-05 01:56:38 +03:00
} else if(net.types[i] == DETECTION){
detection_layer layer = *(detection_layer *) net.layers[i];
return layer.inputs;
2014-12-16 22:40:05 +03:00
} else if(net.types[i] == CROP){
crop_layer layer = *(crop_layer *) net.layers[i];
return layer.c*layer.h*layer.w;
2014-05-10 02:14:52 +04:00
}
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.inputs;
}
2015-03-12 08:20:15 +03:00
fprintf(stderr, "Can't find input size\n");
2014-05-10 02:14:52 +04:00
return 0;
}
int get_network_output_size_layer(network net, int i)
{
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
2013-11-13 22:50:38 +04:00
image output = get_convolutional_image(layer);
return output.h*output.w*output.c;
}
2015-02-11 06:41:03 +03:00
else if(net.types[i] == DECONVOLUTIONAL){
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
image output = get_deconvolutional_image(layer);
return output.h*output.w*output.c;
}
2015-03-05 01:56:38 +03:00
else if(net.types[i] == DETECTION){
detection_layer layer = *(detection_layer *)net.layers[i];
return get_detection_layer_output_size(layer);
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
2013-11-13 22:50:38 +04:00
image output = get_maxpool_image(layer);
return output.h*output.w*output.c;
2014-12-16 22:40:05 +03:00
}
2015-03-12 08:20:15 +03:00
else if(net.types[i] == CROP){
2014-12-16 22:40:05 +03:00
crop_layer layer = *(crop_layer *) net.layers[i];
return layer.c*layer.crop_height*layer.crop_width;
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.outputs;
2014-10-13 11:29:01 +04:00
}
else if(net.types[i] == DROPOUT){
2014-08-08 23:04:15 +04:00
dropout_layer layer = *(dropout_layer *) net.layers[i];
return layer.inputs;
}
2013-12-03 04:41:40 +04:00
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.inputs;
}
2015-03-12 08:20:15 +03:00
fprintf(stderr, "Can't find output size\n");
return 0;
}
2014-03-13 08:57:34 +04:00
int resize_network(network net, int h, int w, int c)
{
int i;
for (i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer *layer = (convolutional_layer *)net.layers[i];
2015-02-11 06:41:03 +03:00
resize_convolutional_layer(layer, h, w);
2014-03-13 08:57:34 +04:00
image output = get_convolutional_image(*layer);
h = output.h;
w = output.w;
c = output.c;
2015-02-11 06:41:03 +03:00
} else if(net.types[i] == DECONVOLUTIONAL){
deconvolutional_layer *layer = (deconvolutional_layer *)net.layers[i];
resize_deconvolutional_layer(layer, h, w);
image output = get_deconvolutional_image(*layer);
h = output.h;
w = output.w;
c = output.c;
2014-04-17 04:05:29 +04:00
}else if(net.types[i] == MAXPOOL){
2014-03-13 08:57:34 +04:00
maxpool_layer *layer = (maxpool_layer *)net.layers[i];
2015-02-11 06:41:03 +03:00
resize_maxpool_layer(layer, h, w);
2014-03-13 08:57:34 +04:00
image output = get_maxpool_image(*layer);
h = output.h;
w = output.w;
c = output.c;
2015-02-11 06:41:03 +03:00
}else if(net.types[i] == DROPOUT){
dropout_layer *layer = (dropout_layer *)net.layers[i];
resize_dropout_layer(layer, h*w*c);
2014-04-17 04:05:29 +04:00
}else if(net.types[i] == NORMALIZATION){
normalization_layer *layer = (normalization_layer *)net.layers[i];
2015-02-11 06:41:03 +03:00
resize_normalization_layer(layer, h, w);
2014-04-17 04:05:29 +04:00
image output = get_normalization_image(*layer);
h = output.h;
w = output.w;
c = output.c;
}else{
2014-03-13 08:57:34 +04:00
error("Cannot resize this type of layer");
}
}
return 0;
}
2013-11-13 22:50:38 +04:00
int get_network_output_size(network net)
{
2014-10-13 11:29:01 +04:00
int i;
for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
2013-11-13 22:50:38 +04:00
return get_network_output_size_layer(net, i);
}
2014-05-10 02:14:52 +04:00
int get_network_input_size(network net)
{
2014-07-14 09:07:51 +04:00
return get_network_input_size_layer(net, 0);
2014-05-10 02:14:52 +04:00
}
2015-04-08 01:25:30 +03:00
detection_layer *get_network_detection_layer(network net)
{
int i;
for(i = 0; i < net.n; ++i){
if(net.types[i] == DETECTION){
detection_layer *layer = (detection_layer *)net.layers[i];
return layer;
}
}
return 0;
}
image get_network_image_layer(network net, int i)
{
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
2013-11-13 22:50:38 +04:00
return get_convolutional_image(layer);
}
2015-02-11 06:41:03 +03:00
else if(net.types[i] == DECONVOLUTIONAL){
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
return get_deconvolutional_image(layer);
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
2013-11-13 22:50:38 +04:00
return get_maxpool_image(layer);
}
2014-04-17 04:05:29 +04:00
else if(net.types[i] == NORMALIZATION){
normalization_layer layer = *(normalization_layer *)net.layers[i];
return get_normalization_image(layer);
}
2015-01-31 09:05:23 +03:00
else if(net.types[i] == DROPOUT){
return get_network_image_layer(net, i-1);
}
2014-08-11 23:52:07 +04:00
else if(net.types[i] == CROP){
crop_layer layer = *(crop_layer *)net.layers[i];
return get_crop_image(layer);
}
2013-12-03 04:41:40 +04:00
return make_empty_image(0,0,0);
}
2013-11-04 23:11:01 +04:00
image get_network_image(network net)
{
int i;
for(i = net.n-1; i >= 0; --i){
2013-11-13 22:50:38 +04:00
image m = get_network_image_layer(net, i);
if(m.h != 0) return m;
}
2013-12-03 04:41:40 +04:00
return make_empty_image(0,0,0);
2013-11-13 22:50:38 +04:00
}
void visualize_network(network net)
{
image *prev = 0;
2013-11-13 22:50:38 +04:00
int i;
2013-12-03 04:41:40 +04:00
char buff[256];
2014-10-25 22:57:26 +04:00
//show_image(get_network_image_layer(net, 0), "Crop");
2013-12-03 04:41:40 +04:00
for(i = 0; i < net.n; ++i){
sprintf(buff, "Layer %d", i);
2013-11-04 23:11:01 +04:00
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
prev = visualize_convolutional_layer(layer, buff, prev);
2014-04-17 04:05:29 +04:00
}
if(net.types[i] == NORMALIZATION){
normalization_layer layer = *(normalization_layer *)net.layers[i];
visualize_normalization_layer(layer, buff);
2013-11-04 23:11:01 +04:00
}
2013-11-13 22:50:38 +04:00
}
2013-11-04 23:11:01 +04:00
}
2014-11-19 00:51:04 +03:00
void top_predictions(network net, int k, int *index)
2014-10-25 22:57:26 +04:00
{
2014-11-19 00:51:04 +03:00
int size = get_network_output_size(net);
2014-10-25 22:57:26 +04:00
float *out = get_network_output(net);
2014-11-19 00:51:04 +03:00
top_k(out, size, k, index);
2014-10-25 22:57:26 +04:00
}
2014-11-06 01:49:58 +03:00
float *network_predict(network net, float *input)
2013-12-07 21:38:50 +04:00
{
2015-03-12 08:20:15 +03:00
#ifdef GPU
2015-01-23 03:38:24 +03:00
if(gpu_index >= 0) return network_predict_gpu(net, input);
2015-03-12 08:20:15 +03:00
#endif
network_state state;
state.input = input;
state.truth = 0;
state.train = 0;
state.delta = 0;
forward_network(net, state);
float *out = get_network_output(net);
2013-12-07 21:38:50 +04:00
return out;
}
2014-08-11 23:52:07 +04:00
matrix network_predict_data_multi(network net, data test, int n)
{
int i,j,b,m;
int k = get_network_output_size(net);
matrix pred = make_matrix(test.X.rows, k);
float *X = calloc(net.batch*test.X.rows, sizeof(float));
for(i = 0; i < test.X.rows; i += net.batch){
for(b = 0; b < net.batch; ++b){
if(i+b == test.X.rows) break;
memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
}
for(m = 0; m < n; ++m){
float *out = network_predict(net, X);
for(b = 0; b < net.batch; ++b){
if(i+b == test.X.rows) break;
for(j = 0; j < k; ++j){
pred.vals[i+b][j] += out[j+b*k]/n;
}
}
}
}
free(X);
return pred;
}
2013-12-07 21:38:50 +04:00
matrix network_predict_data(network net, data test)
{
2014-07-14 09:07:51 +04:00
int i,j,b;
2013-12-07 21:38:50 +04:00
int k = get_network_output_size(net);
matrix pred = make_matrix(test.X.rows, k);
2014-11-06 01:49:58 +03:00
float *X = calloc(net.batch*test.X.cols, sizeof(float));
2014-07-14 09:07:51 +04:00
for(i = 0; i < test.X.rows; i += net.batch){
for(b = 0; b < net.batch; ++b){
if(i+b == test.X.rows) break;
memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
}
float *out = network_predict(net, X);
for(b = 0; b < net.batch; ++b){
if(i+b == test.X.rows) break;
for(j = 0; j < k; ++j){
pred.vals[i+b][j] = out[j+b*k];
}
2013-12-07 21:38:50 +04:00
}
}
2014-07-14 09:07:51 +04:00
free(X);
2013-12-07 21:38:50 +04:00
return pred;
}
2013-12-03 04:41:40 +04:00
void print_network(network net)
{
int i,j;
for(i = 0; i < net.n; ++i){
float *output = 0;
2013-12-03 04:41:40 +04:00
int n = 0;
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
output = layer.output;
image m = get_convolutional_image(layer);
n = m.h*m.w*m.c;
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
output = layer.output;
image m = get_maxpool_image(layer);
n = m.h*m.w*m.c;
}
2014-08-11 23:52:07 +04:00
else if(net.types[i] == CROP){
crop_layer layer = *(crop_layer *)net.layers[i];
output = layer.output;
image m = get_crop_image(layer);
n = m.h*m.w*m.c;
}
2013-12-03 04:41:40 +04:00
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
output = layer.output;
n = layer.outputs;
}
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
output = layer.output;
n = layer.inputs;
}
float mean = mean_array(output, n);
float vari = variance_array(output, n);
2013-12-06 01:17:16 +04:00
fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari);
2013-12-03 04:41:40 +04:00
if(n > 100) n = 100;
2013-12-06 01:17:16 +04:00
for(j = 0; j < n; ++j) fprintf(stderr, "%f, ", output[j]);
if(n == 100)fprintf(stderr,".....\n");
fprintf(stderr, "\n");
2013-12-03 04:41:40 +04:00
}
}
2013-12-07 21:38:50 +04:00
2014-12-18 22:28:42 +03:00
void compare_networks(network n1, network n2, data test)
{
matrix g1 = network_predict_data(n1, test);
matrix g2 = network_predict_data(n2, test);
int i;
int a,b,c,d;
a = b = c = d = 0;
for(i = 0; i < g1.rows; ++i){
int truth = max_index(test.y.vals[i], test.y.cols);
int p1 = max_index(g1.vals[i], g1.cols);
int p2 = max_index(g2.vals[i], g2.cols);
if(p1 == truth){
if(p2 == truth) ++d;
else ++c;
}else{
if(p2 == truth) ++b;
else ++a;
}
}
printf("%5d %5d\n%5d %5d\n", a, b, c, d);
2014-12-19 00:21:30 +03:00
float num = pow((abs(b - c) - 1.), 2.);
float den = b + c;
printf("%f\n", num/den);
2014-12-18 22:28:42 +03:00
}
float network_accuracy(network net, data d)
2013-12-07 01:26:09 +04:00
{
2013-12-07 21:38:50 +04:00
matrix guess = network_predict_data(net, d);
2014-12-12 00:15:26 +03:00
float acc = matrix_topk_accuracy(d.y, guess,1);
free_matrix(guess);
return acc;
}
float *network_accuracies(network net, data d)
{
static float acc[2];
matrix guess = network_predict_data(net, d);
acc[0] = matrix_topk_accuracy(d.y, guess,1);
acc[1] = matrix_topk_accuracy(d.y, guess,5);
2013-12-07 21:38:50 +04:00
free_matrix(guess);
return acc;
2013-12-07 01:26:09 +04:00
}
2014-12-12 00:15:26 +03:00
2014-08-11 23:52:07 +04:00
float network_accuracy_multi(network net, data d, int n)
{
matrix guess = network_predict_data_multi(net, d, n);
2014-12-12 00:15:26 +03:00
float acc = matrix_topk_accuracy(d.y, guess,1);
2014-08-11 23:52:07 +04:00
free_matrix(guess);
return acc;
}